Research Article
BibTex RIS Cite
Year 2020, Volume: 1 Issue: 2, 127 - 141, 31.12.2020

Abstract

References

  • 1. Reid, R.C., Prausnitz, J.M. (1986). The Properties of Liquids and Gases. McGraw-Hill, New York.
  • 2. Sairam, P.V.S., Rao, G.S., Madhavi, M.V.D.N.S., Rayapareddy, K., & Hemalatha, K. (2020). Computational studies of molecular interactions in the binary mixtures of ethyl lactate and nitro-, chloro-and bromobenzene. Materials Today: Proceedings, 23, 458-464. doi:10.1016/j.matpr.2019.04.202.
  • 3. Müller, K.; Faeh, C.; Diederich, F. (2007). Fluorine in Pharmaceuticals: Looking Beyond Intuition. Science, 28;317, 1881−1886. doi: 10.1126/science.1131943.
  • 4. Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. (2008). Fluorine in Medicinal Chemistry. Chem. Soc. Rev., 37, 320−330. doi:10.1039/B610213C.
  • 5. Lu, Y.; Liu, C.; Chen, Q.-Y. (2015). Recent Advances in Difluoromethylation Reaction. Curr. Org. Chem. 19, 1638−1650. doi: 10.2174/1385272819666150615235605.
  • 6. Sap, J. B., Straathof, N. J., Knauber, T., Meyer, C. F., Medebielle, M., Buglioni, L., & Gouverneur, V. (2020). Organophotoredox Hydrodefluorination of Trifluoromethylarenes with Translational Applicability to Drug Discovery. Journal of the American Chemical Society. 142(20), 9181-9187. doi:10.1021/jacs.0c03881.
  • 7. Holmes, S.A. and Thomas, T. (1975). Electron Distribution in Trifluoromethylbenzenes. Electron Donation by the Trifluoromethyl Group. Am. Chem. Soc. 97(9).2337–2341. doi:10.1021/ja00842a004.
  • 8. PAYÁN-GÓMEZ, S.A, FLORES-HOLGUÍN, N., PÉREZ-HERNÁNDEZ, A. (2010). Computational molecular characterization of the flavonoid rutin. Chem. Cent. J. 4:12. doi: 10.1186/1752-153X-4-12.
  • 9. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, et al. (1998). Gaussian 98, Revision A.7, Gaussian, Inc., Pittsburgh PA.
  • 10. Young, D.C., (2001). A Practical Guide for Applying Techniques to Real-World Problems Computational Chemistry, Copyright John Wiley & Sons, Inc., ISBNs: 0-471-33368-9 (Hardback), 0-471-22065-5 (Electronic).
  • 11. Fukui, K., Yonezawa, T., Nagata, C., Shingu, H. (1954). J. Chem. Phys. 22, 1433-1442.
  • 12. Fukui, K. (1975). Theory of Orientation and Stereoselection; Springer-Verlag: Berlin.
  • 13. Minsky, A, Meyer, AY, Rabinovitz, M. (1985). Paratropicity and antiaromaticity: Role of the Homo-LUMO energy gap. Tetrahedron Lett. 41(4):785-791. doi:10.1016/S0040-4020(01)96458-0.
  • 14. De Proft, F., Geerlings, P. (2001). Conceptual and computational DFT in the study of aromaticity. Chem Rev.101(5):1451-64. doi:10.1021/cr9903205.
  • 15. Ravi, P., Gory G.M., Tewari S.P., Sikder A.K., (2011). Journal of Energetic Materials, 29. 209-227.
  • 16. Mulliken R.S., (1955). Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I. J. Chem. Phys. 23(10). 1833–1840. doi:10.1063/1.1740588.

QUANTUM CHEMICAL CALCULATIONS OF SOME BENZENE DERIVATIVES

Year 2020, Volume: 1 Issue: 2, 127 - 141, 31.12.2020

Abstract

HOMO-LUMO energies, hardness, Mulliken, electronic and zero-point energy, Mulliken charges of benzene, fluorobenzene, chlorobenzene, bromobenzene, nitrobenzene, cyanobenzene, trifluoromethyl benzene, ethenylbenzene, di, tri, tetra and penta fluorobenzene molecules in gas phase and water phase for neutral and anionic form were calculated with B3lyp/6-31G(d,p) level by using G03 program and also hybridization of these molecules were studied. The Sum of electronic and zero-point energies found from the calculations performed in the gas phase is lower than made in the water phase.

References

  • 1. Reid, R.C., Prausnitz, J.M. (1986). The Properties of Liquids and Gases. McGraw-Hill, New York.
  • 2. Sairam, P.V.S., Rao, G.S., Madhavi, M.V.D.N.S., Rayapareddy, K., & Hemalatha, K. (2020). Computational studies of molecular interactions in the binary mixtures of ethyl lactate and nitro-, chloro-and bromobenzene. Materials Today: Proceedings, 23, 458-464. doi:10.1016/j.matpr.2019.04.202.
  • 3. Müller, K.; Faeh, C.; Diederich, F. (2007). Fluorine in Pharmaceuticals: Looking Beyond Intuition. Science, 28;317, 1881−1886. doi: 10.1126/science.1131943.
  • 4. Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. (2008). Fluorine in Medicinal Chemistry. Chem. Soc. Rev., 37, 320−330. doi:10.1039/B610213C.
  • 5. Lu, Y.; Liu, C.; Chen, Q.-Y. (2015). Recent Advances in Difluoromethylation Reaction. Curr. Org. Chem. 19, 1638−1650. doi: 10.2174/1385272819666150615235605.
  • 6. Sap, J. B., Straathof, N. J., Knauber, T., Meyer, C. F., Medebielle, M., Buglioni, L., & Gouverneur, V. (2020). Organophotoredox Hydrodefluorination of Trifluoromethylarenes with Translational Applicability to Drug Discovery. Journal of the American Chemical Society. 142(20), 9181-9187. doi:10.1021/jacs.0c03881.
  • 7. Holmes, S.A. and Thomas, T. (1975). Electron Distribution in Trifluoromethylbenzenes. Electron Donation by the Trifluoromethyl Group. Am. Chem. Soc. 97(9).2337–2341. doi:10.1021/ja00842a004.
  • 8. PAYÁN-GÓMEZ, S.A, FLORES-HOLGUÍN, N., PÉREZ-HERNÁNDEZ, A. (2010). Computational molecular characterization of the flavonoid rutin. Chem. Cent. J. 4:12. doi: 10.1186/1752-153X-4-12.
  • 9. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, et al. (1998). Gaussian 98, Revision A.7, Gaussian, Inc., Pittsburgh PA.
  • 10. Young, D.C., (2001). A Practical Guide for Applying Techniques to Real-World Problems Computational Chemistry, Copyright John Wiley & Sons, Inc., ISBNs: 0-471-33368-9 (Hardback), 0-471-22065-5 (Electronic).
  • 11. Fukui, K., Yonezawa, T., Nagata, C., Shingu, H. (1954). J. Chem. Phys. 22, 1433-1442.
  • 12. Fukui, K. (1975). Theory of Orientation and Stereoselection; Springer-Verlag: Berlin.
  • 13. Minsky, A, Meyer, AY, Rabinovitz, M. (1985). Paratropicity and antiaromaticity: Role of the Homo-LUMO energy gap. Tetrahedron Lett. 41(4):785-791. doi:10.1016/S0040-4020(01)96458-0.
  • 14. De Proft, F., Geerlings, P. (2001). Conceptual and computational DFT in the study of aromaticity. Chem Rev.101(5):1451-64. doi:10.1021/cr9903205.
  • 15. Ravi, P., Gory G.M., Tewari S.P., Sikder A.K., (2011). Journal of Energetic Materials, 29. 209-227.
  • 16. Mulliken R.S., (1955). Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I. J. Chem. Phys. 23(10). 1833–1840. doi:10.1063/1.1740588.
There are 16 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Fatma Genç

Fatma Kandemirli

Publication Date December 31, 2020
Published in Issue Year 2020 Volume: 1 Issue: 2

Cite

APA Genç, F., & Kandemirli, F. (2020). QUANTUM CHEMICAL CALCULATIONS OF SOME BENZENE DERIVATIVES. Journal of Amasya University the Institute of Sciences and Technology, 1(2), 127-141.
AMA Genç F, Kandemirli F. QUANTUM CHEMICAL CALCULATIONS OF SOME BENZENE DERIVATIVES. J. Amasya Univ. Inst. Sci. Technol. December 2020;1(2):127-141.
Chicago Genç, Fatma, and Fatma Kandemirli. “QUANTUM CHEMICAL CALCULATIONS OF SOME BENZENE DERIVATIVES”. Journal of Amasya University the Institute of Sciences and Technology 1, no. 2 (December 2020): 127-41.
EndNote Genç F, Kandemirli F (December 1, 2020) QUANTUM CHEMICAL CALCULATIONS OF SOME BENZENE DERIVATIVES. Journal of Amasya University the Institute of Sciences and Technology 1 2 127–141.
IEEE F. Genç and F. Kandemirli, “QUANTUM CHEMICAL CALCULATIONS OF SOME BENZENE DERIVATIVES”, J. Amasya Univ. Inst. Sci. Technol., vol. 1, no. 2, pp. 127–141, 2020.
ISNAD Genç, Fatma - Kandemirli, Fatma. “QUANTUM CHEMICAL CALCULATIONS OF SOME BENZENE DERIVATIVES”. Journal of Amasya University the Institute of Sciences and Technology 1/2 (December 2020), 127-141.
JAMA Genç F, Kandemirli F. QUANTUM CHEMICAL CALCULATIONS OF SOME BENZENE DERIVATIVES. J. Amasya Univ. Inst. Sci. Technol. 2020;1:127–141.
MLA Genç, Fatma and Fatma Kandemirli. “QUANTUM CHEMICAL CALCULATIONS OF SOME BENZENE DERIVATIVES”. Journal of Amasya University the Institute of Sciences and Technology, vol. 1, no. 2, 2020, pp. 127-41.
Vancouver Genç F, Kandemirli F. QUANTUM CHEMICAL CALCULATIONS OF SOME BENZENE DERIVATIVES. J. Amasya Univ. Inst. Sci. Technol. 2020;1(2):127-41.



Scilit 30442                               

Academindex 30443

SOBIAD 30444


29442 As of 2023, JAUIST is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).