Araştırma Makalesi
BibTex RIS Kaynak Göster

SHIFT TRANSFORM APPROACH TO THE TWO-SIDED BALLOT THEOREM

Yıl 2022, Cilt: 3 Sayı: 1, 1 - 7, 30.06.2022
https://doi.org/10.54559/jauist.1070936

Öz

We present a recursive formula for the two-sided ballot theorem using left and right shift transforms. In particular, we showed that the xth entry of the image of the d + 1 dimensional unit vector under the sum of the left and right shift operators is the number of walks in the lattice interval [0,d] that start at the origin and stop at the location x. This approach enables us to write a recursive formula for the number of possible n−walks between two obstacles that stop at a predetermined location.

Kaynakça

  • [1] A. Aeppli, Zur Theorie verketteter Wahrscheinlichkeitem, Markoffsche Ketten h ̈oherer Ordnung, Ph.D. Thesis, Eidgenössische Technische Hochschule, Zürich, 1924.
  • [2] D. Andr ́e, Solution directe du probl`eme r ́esolu par M. Bertrand, Comptes Rendus de l’Acad ́emie des Sciences, Paris 105 (1887) 436-437.
  • [3] E ́. Barbier, G ́en ́eralisation du probl`eme r ́esolu par M. J. Bertrand, Comptes Rendus de l’Acad ́emie des Sciences, Paris 105 (1887) p.407.
  • [4] J. Bertrand, Solution d’un probl`eme, Comptes Rendus de l’Acad ́emie des Sciences, Paris 105 (1887) p.369.
  • [5] W. Feller, An introduction to probability theory and its applications, Vol. 1, (third edition, revised), John Wiley and Sons, 1970.
  • [6] P. A. MacMahon, Memoir on the theory of the partitions of numbers, part iv: on the probability that the successful candidate at an election by ballot may never at anytime have fewer votes than the one who is unsuccessful; on a generalization of this question; and its connection with other questions of partition, permutation, and combination, Philosophical Transactions of the Royal Society of London, Series A 209 (1909) 153- 175.
  • [7] T. V. Narayana, Lattice path combinatorics with statistical applications, University of Toronto Press, 1979.
  • [8] M. Renault, Four proofs of the ballot theorem, Math. Mag. 80 (2007), 345-352.
  • [9] R. Srinivasan, On some results of Taka ́cs in ballot problems, Discrete Math. 28 (1979), 213-218.
  • [10] L. Tak ́acs, On the ballot theorems, Advances in Combinatorial Methods and Applications to Probability and Statistics, Birkha ̈user, 1997.
Yıl 2022, Cilt: 3 Sayı: 1, 1 - 7, 30.06.2022
https://doi.org/10.54559/jauist.1070936

Öz

Kaynakça

  • [1] A. Aeppli, Zur Theorie verketteter Wahrscheinlichkeitem, Markoffsche Ketten h ̈oherer Ordnung, Ph.D. Thesis, Eidgenössische Technische Hochschule, Zürich, 1924.
  • [2] D. Andr ́e, Solution directe du probl`eme r ́esolu par M. Bertrand, Comptes Rendus de l’Acad ́emie des Sciences, Paris 105 (1887) 436-437.
  • [3] E ́. Barbier, G ́en ́eralisation du probl`eme r ́esolu par M. J. Bertrand, Comptes Rendus de l’Acad ́emie des Sciences, Paris 105 (1887) p.407.
  • [4] J. Bertrand, Solution d’un probl`eme, Comptes Rendus de l’Acad ́emie des Sciences, Paris 105 (1887) p.369.
  • [5] W. Feller, An introduction to probability theory and its applications, Vol. 1, (third edition, revised), John Wiley and Sons, 1970.
  • [6] P. A. MacMahon, Memoir on the theory of the partitions of numbers, part iv: on the probability that the successful candidate at an election by ballot may never at anytime have fewer votes than the one who is unsuccessful; on a generalization of this question; and its connection with other questions of partition, permutation, and combination, Philosophical Transactions of the Royal Society of London, Series A 209 (1909) 153- 175.
  • [7] T. V. Narayana, Lattice path combinatorics with statistical applications, University of Toronto Press, 1979.
  • [8] M. Renault, Four proofs of the ballot theorem, Math. Mag. 80 (2007), 345-352.
  • [9] R. Srinivasan, On some results of Taka ́cs in ballot problems, Discrete Math. 28 (1979), 213-218.
  • [10] L. Tak ́acs, On the ballot theorems, Advances in Combinatorial Methods and Applications to Probability and Statistics, Birkha ̈user, 1997.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Kubilay Dagtoros

Yayımlanma Tarihi 30 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 3 Sayı: 1

Kaynak Göster

APA Dagtoros, K. (2022). SHIFT TRANSFORM APPROACH TO THE TWO-SIDED BALLOT THEOREM. Journal of Amasya University the Institute of Sciences and Technology, 3(1), 1-7. https://doi.org/10.54559/jauist.1070936
AMA Dagtoros K. SHIFT TRANSFORM APPROACH TO THE TWO-SIDED BALLOT THEOREM. J. Amasya Univ. Inst. Sci. Technol. Haziran 2022;3(1):1-7. doi:10.54559/jauist.1070936
Chicago Dagtoros, Kubilay. “SHIFT TRANSFORM APPROACH TO THE TWO-SIDED BALLOT THEOREM”. Journal of Amasya University the Institute of Sciences and Technology 3, sy. 1 (Haziran 2022): 1-7. https://doi.org/10.54559/jauist.1070936.
EndNote Dagtoros K (01 Haziran 2022) SHIFT TRANSFORM APPROACH TO THE TWO-SIDED BALLOT THEOREM. Journal of Amasya University the Institute of Sciences and Technology 3 1 1–7.
IEEE K. Dagtoros, “SHIFT TRANSFORM APPROACH TO THE TWO-SIDED BALLOT THEOREM”, J. Amasya Univ. Inst. Sci. Technol., c. 3, sy. 1, ss. 1–7, 2022, doi: 10.54559/jauist.1070936.
ISNAD Dagtoros, Kubilay. “SHIFT TRANSFORM APPROACH TO THE TWO-SIDED BALLOT THEOREM”. Journal of Amasya University the Institute of Sciences and Technology 3/1 (Haziran 2022), 1-7. https://doi.org/10.54559/jauist.1070936.
JAMA Dagtoros K. SHIFT TRANSFORM APPROACH TO THE TWO-SIDED BALLOT THEOREM. J. Amasya Univ. Inst. Sci. Technol. 2022;3:1–7.
MLA Dagtoros, Kubilay. “SHIFT TRANSFORM APPROACH TO THE TWO-SIDED BALLOT THEOREM”. Journal of Amasya University the Institute of Sciences and Technology, c. 3, sy. 1, 2022, ss. 1-7, doi:10.54559/jauist.1070936.
Vancouver Dagtoros K. SHIFT TRANSFORM APPROACH TO THE TWO-SIDED BALLOT THEOREM. J. Amasya Univ. Inst. Sci. Technol. 2022;3(1):1-7.



Scilit 30442                               

Academindex 30443

SOBIAD 30444


29442 As of 2023, JAUIST is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).