Araştırma Makalesi
BibTex RIS Kaynak Göster

Yatay Kuyruklarda Kıvrık Kanat Ucu Kullanımının Aerodinamik Etkileri

Yıl 2017, , 87 - 98, 18.12.2017
https://doi.org/10.30518/jav.338393

Öz



Bu çalışmada, NACA 0012 simetrik kanat
profiline sahip, ticari amaçlı bir yolcu uçağının yatay dengeleyicisi ve bu
yatay dengeleyicinin ucuna yerleştirilen iki farklı kıvrık kanat ucu yapısının
üzerinde farklı hücum açılarında oluşan aerodinamik kuvvetler incelenmiştir.
Yatay dengeleyici, SolidWorks tasarım programında 200 noktadan oluşan kanat
profili eğrisi ve belirlenen V açısı, ok açısı ve sivrilme oranları kullanılarak
tasarlanmıştır. Bu tasarım C1 olarak tanımlanmıştır. C1
tasarımının uç kısmına, aynı ok açısına, bükme açısına, sivrilme oranına, açıklığa,
yüksekliğe sahip; fakat uç kısmındaki kanat profili kalınlığı farklı olan iki
kıvrık kanat ucu yapısı tasarlanarak toplamda üç kanat tasarımı elde
edilmiştir. Bu tasarımlar sırası ile C2 ve C3 olarak
adlandırılmıştır. Üç farklı tasarımın aerodinamik analizi, bir hesaplamalı
akışkanlar dinamiği programı olan Fluent kullanılarak yapılmıştır. On üç farklı
hücum açısında gerçekleştirilen analizler sonucunda elde edilen sonuçlara göre
tasarımların üzerindeki sürükleme (CD) ve taşıma  (CL) katsayılarındaki değişimler
gözlemlenmiştir. Elde edilen sonuçlara göre, C2 tasarımı için
analizlerin yapıldığı bütün hücum açılarında daha yüksek taşıma kuvvetinin
sürükleme kuvvetine oranına (CL/CD) sahip olduğu
görülmüştür. C3 tasarımı için ise -1 derece hücum açısındaki sonuç
haricinde aynı sonuç elde edilmiştir.




Kaynakça

  • [1] Tyler T. (2016). ''International Air Transport Association Annual Review,'' 72nd Annual General Meeting, Dublin.
  • [2] Maughmer, D. M. (2001). The Design of Winglets for High-Performance Sailplanes, The American Institute of Aeronautics and Astronautics, 2406, 1-11.
  • [3] Maughmer, D. M., Swan, T. S., Willits, S. M. (2001). The Design and Testing of a Winglet Airfoil for Low-Speed Aircraft, The American Institute of Aeronautics and Astronautics, 2478, 1-10.
  • [4] Menter, F. R., Kuntz, M., Langtry, R. (2003). Ten Years of Industrial Experience with the SST Turbulence Model, Turbulence, Heat and Mass Transfer, 4, 1-8.
  • [5] Nicolosi, F., Marco, A. D., Vecchia, P. D. (2011). Flight Tests, Performance, and Flight Certification of a Twin-Engine Light Aircraft, Journal of Aircraft, 48 (1), 177-192.
  • [6] Curry, M (2008). Winglets. http://www.nasa.gov/centers/dryden/about/Organizations/Technology/Facts/TF-2004-15-DFRC.html. Erişim tarihi Mayıs 18, 2016.
  • [7] Whitcomb, R. T. (1976). A Design Approach and Selected Wind-Tunnel Results at High Subsonic Speeds for Wing-Tip Mounted Winglets, NASA Langley Research Center Hampton, Washington, 33.
  • [8] Elham, A., Tooren, M. J. L. V., 2014. Winglet multi-objective shape optimization. Aerospace Science and Technology, 37: 93-109.
  • [9] Reddy, S. R., Sobieczky, H., Abdoli, A., Dulikravich, G. S., Multi-Winglets: Multi-Objective Optimization of Aerodynamic Shape, 53rd AIAA Aerospace Sciences Meeting, AIAA.
  • [10] Gratzer, L.B. "Split blended winglet,'' US patent 0 312 928, Dec. 13, 2012.
  • [11] L.B. Gratzer, ''Blended winglet,'' US patent 5 348 253, Sep. 20, 1994.
  • [12] Anderson, J.D. (1999). Aircraft Performance and Design, The McGraw-Hill Companies, United States of America, pp. 302.
  • [13] Snorri, G. (2014). General Aviation Aircraft Design: Applied Methods and Procedures. Butterworth-Heinemann is an imprint of Elsevier, USA.
  • [14] Bertin, J. J., Russell, M. C. (2014). Aerodynamics for Engineers Sixth Edition, Pearson Education Limited, London.
  • [15] Ansys CFX-Solver Theory Guide, 2009.
  • [16] Nichols, R. H., Turbulence Models and Their Application to Complex Flows. University of Alabama, Birmingham, Revision 14.1.
  • [17] Celik, I. B. (1999). Introductory Turbulence Modeling. Mechanical and Aerospace Engineering Department, West Virginia University.
  • [18] Ansys Fluent Theory Guide, 2013.

The Aerodynamic Effects of The Using Curved Wingtip Devices on Horizontal Tail

Yıl 2017, , 87 - 98, 18.12.2017
https://doi.org/10.30518/jav.338393

Öz

In this study, aerodynamic forces on a
horizontal stabilizer of commercial aircraft that has NACA 0012 airfoil and new
horizontal stabilizers that are designed by mounting two different curved
wingtip devices (winglet) to the preliminary horizontal stabilizer at different
angle of attack values. The preliminary horizontal stabilizer is designed by
the airfoil shape that is composed of 200 points and determined span, root
chord, dihedral angle, sweep angle and taper ratio values. This design is
defined as C1. Two curved wingtip devices that have the same sweep
angle, cant angle, taper ratio, span and height but different airfoil thickness
ratio at tip are designed and mounted to the C1. These are named as
C2 and C3, respectively. The aerodynamic analyses of
these designs are done by using Fluent that is a well-known computational fluid
dynamics program. The analyses are performed at 13 different angle of attack
values and the alterations on drag (CD) and lift (CL) coefficients
of the designed horizontal tails are observed. According to the results, C2
has higher lift to drag ratio (CL/CD) values at all angle
of attack values. For the C3 design, the same result has been seen
except for the result of -1 degree angle of attack.

Kaynakça

  • [1] Tyler T. (2016). ''International Air Transport Association Annual Review,'' 72nd Annual General Meeting, Dublin.
  • [2] Maughmer, D. M. (2001). The Design of Winglets for High-Performance Sailplanes, The American Institute of Aeronautics and Astronautics, 2406, 1-11.
  • [3] Maughmer, D. M., Swan, T. S., Willits, S. M. (2001). The Design and Testing of a Winglet Airfoil for Low-Speed Aircraft, The American Institute of Aeronautics and Astronautics, 2478, 1-10.
  • [4] Menter, F. R., Kuntz, M., Langtry, R. (2003). Ten Years of Industrial Experience with the SST Turbulence Model, Turbulence, Heat and Mass Transfer, 4, 1-8.
  • [5] Nicolosi, F., Marco, A. D., Vecchia, P. D. (2011). Flight Tests, Performance, and Flight Certification of a Twin-Engine Light Aircraft, Journal of Aircraft, 48 (1), 177-192.
  • [6] Curry, M (2008). Winglets. http://www.nasa.gov/centers/dryden/about/Organizations/Technology/Facts/TF-2004-15-DFRC.html. Erişim tarihi Mayıs 18, 2016.
  • [7] Whitcomb, R. T. (1976). A Design Approach and Selected Wind-Tunnel Results at High Subsonic Speeds for Wing-Tip Mounted Winglets, NASA Langley Research Center Hampton, Washington, 33.
  • [8] Elham, A., Tooren, M. J. L. V., 2014. Winglet multi-objective shape optimization. Aerospace Science and Technology, 37: 93-109.
  • [9] Reddy, S. R., Sobieczky, H., Abdoli, A., Dulikravich, G. S., Multi-Winglets: Multi-Objective Optimization of Aerodynamic Shape, 53rd AIAA Aerospace Sciences Meeting, AIAA.
  • [10] Gratzer, L.B. "Split blended winglet,'' US patent 0 312 928, Dec. 13, 2012.
  • [11] L.B. Gratzer, ''Blended winglet,'' US patent 5 348 253, Sep. 20, 1994.
  • [12] Anderson, J.D. (1999). Aircraft Performance and Design, The McGraw-Hill Companies, United States of America, pp. 302.
  • [13] Snorri, G. (2014). General Aviation Aircraft Design: Applied Methods and Procedures. Butterworth-Heinemann is an imprint of Elsevier, USA.
  • [14] Bertin, J. J., Russell, M. C. (2014). Aerodynamics for Engineers Sixth Edition, Pearson Education Limited, London.
  • [15] Ansys CFX-Solver Theory Guide, 2009.
  • [16] Nichols, R. H., Turbulence Models and Their Application to Complex Flows. University of Alabama, Birmingham, Revision 14.1.
  • [17] Celik, I. B. (1999). Introductory Turbulence Modeling. Mechanical and Aerospace Engineering Department, West Virginia University.
  • [18] Ansys Fluent Theory Guide, 2013.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Konular Uzay Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Öztürk Özdemir Kanat

Durmuş Sinan Körpe Bu kişi benim

Ali Osman Kurban

Yayımlanma Tarihi 18 Aralık 2017
Gönderilme Tarihi 15 Eylül 2017
Kabul Tarihi 1 Aralık 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Kanat, Ö. Ö., Körpe, D. S., & Kurban, A. O. (2017). The Aerodynamic Effects of The Using Curved Wingtip Devices on Horizontal Tail. Journal of Aviation, 1(2), 87-98. https://doi.org/10.30518/jav.338393

Journal of Aviation - JAV 


www.javsci.com - editor@javsci.com


9210This journal is licenced under a Creative Commons Attiribution-NonCommerical 4.0 İnternational Licence