Research Article
BibTex RIS Cite

Year 2025, Volume: 9 Issue: 2, 277 - 284, 28.06.2025
https://doi.org/10.30518/jav.1638955

Abstract

References

  • Ahmad, F., Kumar, P., Dobriyal, R. and Patil, P. P. (2021). Estimation of the thrust coefficient of a Quadcopter Propeller using Computational Fluid Dynamics. IOP Conference Series: Materials Science and Engineering, 1116, 012095. p.
  • Ahmad, F., Kumar, P., Pravin, P. and Kumar, V. (2021). Design and modal analysis of a Quadcopter propeller through finite element analysis. International Conference on Technological Advancements in Materials Science and Manufacturing, 46, 10322–10328. pp.
  • Al-Haddad, L. A., Giernacki, W., Basem, A., Khan, Z. H., Jaber, A. A. and Al-Haddad, S. A. (2024). UAV propeller fault diagnosis using deep learning of non-traditional χ2-selected Taguchi method-tested Lempel–Ziv complexity and Teager–Kaiser energy features. Scientific Reports, 14(1), 18599. p.
  • Anh Vu, C. T., Van Hung, Phan, Dinh Chien ,Dang, Thai ,Vu Dang and and Quang, P. K. (2025). Improving energy efficiency for fishing vessels using two-pitch propellers. Journal of International Maritime Safety, Environmental Affairs, and Shipping, 9(1), 2460136. p.
  • Brandt, J. B. (2005). Small-scale propeller performance at low speeds. University of Illinois at Urbana- Champaign.
  • Çelebi, Y. and Aydın, H. (2025a). Multirotor Unmanned Aerial Vehicle Systems: An In-Depth Analysis of Hardware, Software, And Communication Systems. Journal of Aviation, 9(1), 225–240. pp.
  • Çelebi, Y. and Aydın, H. (2025b). Analysis of Directional Stability of A Quadcopter for Different Propeller Designs Using Experimental and Computational Fluid Dynamics Applications. Politeknik Dergisi, 1–1. pp.
  • Çelebi, Y., Cengiz, M. and Aydın, H. (2024). Propeller Design of UAV Under Low Reynolds Numbers. In Article and Reviews in Engineering Sciences (407–438. pp.). Platanus Publishing.
  • Céspedes, J. F. and Lopez, O. D. (2019). Simulation and validation of the aerodynamic performance of a quadcopter in hover condition using overset mesh. In AIAA Aviation 2019 Forum (Vol. 1–0). American Institute of Aeronautics and Astronautics.
  • Ciattaglia, G., Iadarola, G., Senigagliesi, L., Spinsante, S. and Gambi, E. (2023). UAV Propeller Rotational Speed Measurement through FMCW Radars. Remote Sensing, 15(1).
  • Cruzatty, C., Sarmiento, E., Valencia, E. and Cando, E. (2022). Design methodology of a UAV propeller implemented in monitoring activities. Advances in Mechanical Engineering Trends, 49, 115–121. pp.
  • de Carvalho, P. H., Cuenca, R. G. and da Silva, F. D. (2023). Cob-2023-1717 on the prediction of propeller tonal noise with machine learning. 27th ABCM International Congress of Mechanical Engineering.
  • Del Duchetto, F., Pagliaroli, T., Candeloro, P., Rossignol, K.-S. and Yin, J. (2025). Aeroacoustic Study of Synchronized Rotors. Aerospace, 12(2).
  • Du Plessis, J. and Bouferrouk, A. (2024). Aerodynamic and Aeroacoustic Analysis of Looped Propeller Blades. 3156. p.
  • Durmuş, S. (2024). Statistical Analysis of Airfoil Usage in Aircraft. Journal of Aviation, 8(3), 214–220. pp.
  • Eraslan, Y. and Oktay, T. (2021). Numerical Investigation of Effects of Airspeed and Rotational Speed on Quadrotor UAV Propeller Thrust Coefficient. Journal of Aviation, 5(1), 9–15. pp.
  • Hairudin, W. M., Mat, M. N. H., Ooi, L. E. and Ismail, N. A. (2024). Co-simulation approach for computational aero-acoustic modeling: Investigating wind-induced noise within two-way radio microphone ports cavity. Journal of Mechanical Engineering and Sciences, 18(1), 9909–9927. pp.
  • J. Lu, W. Nie, P. Xing, Z. Wang, Y. Cao, J. Wang, and Z. Xi. (2025). An EKF Based on Aerodynamic Constraints for Fixed-Wing AAV Attitude Estimation. IEEE Sensors Journal, 25(9), 14860–14874. pp.
  • Jin, J., Ye, Y., Li, X., Li, L., Shan, M. and Sun, J. (2025). A Deep Learning-Based Mapping Model for Three- Dimensional Propeller RANS and LES Flow Fields. Applied Sciences, 15(1).
  • Jordan, W. A., Narsipur, S. and Deters, R. (2020). Aerodynamic and Aeroacoustic Performance of Small UAV Propellers in Static Conditions. In AIAA AVIATION 2020 FORUM (Vol. 1–0). American Institute of Aeronautics and Astronautics.
  • Lasota, M., Šidlof, P., Kaltenbacher, M. and Schoder, S. (2021). Impact of the Sub-Grid Scale Turbulence Model in Aeroacoustic Simulation of Human Voice. Applied Sciences, 11(4).
  • Li, J., Zhang, M., Tay, C. M. J., Liu, N., Cui, Y., Chew, S. C. and Khoo, B. C. (2022). Low-Reynolds-number airfoil design optimization using deep-learning-based tailored airfoil modes. Aerospace Science and Technology, 121, 107309. p.
  • McKay, R. S., Kingan, M. J., Go, S. T. and Jung, R. (2021). Experimental and analytical investigation of contra- rotating multi-rotor UAV propeller noise. Applied Acoustics, 177, 107850. p.
  • Nikolaou, E., Karatzas, E., Kilimtzidis, S. and Kostopoulos, V. (2025). Winglet Design for Class I Mini UAV— Aerodynamic and Performance Optimization. Engineering Proceedings, 90(1).
  • Oktay, T. and Eraslan, Y. (2020). Computational fluid dynamics (Cfd) investigation of a quadrotor UAV propeller. 1–5. pp.
  • Özen, E. and Oktay, T. (2024). Maximization of Flight Performance of Eight-Rotor Multirotor with Differentiated Hub Angle. Journal of Aviation, 8(3), 206–213. pp.
  • Yıldırım Dalkıran, F. and Kırteke, E. (2024). Design and Implementation of A Low-Cost Parachute Landing System for Fixed-Wing Mini Unmanned Aerial Vehicles. Journal of Aviation, 8(3), 198–205. pp.
  • You, K., Zhao, X., Zhao, S.-Z. and Faisal, M. (2020). Design and Optimization of a High-altitude Long Endurance UAV Propeller. IOP Conference Series: Materials Science and Engineering, 926(1), 012018. p.

Computational Evaluation of Aerodynamics and Aeroacoustics of a Propeller for a Multirotor Unmanned Aerial Vehicle

Year 2025, Volume: 9 Issue: 2, 277 - 284, 28.06.2025
https://doi.org/10.30518/jav.1638955

Abstract

The development of aircraft propulsion systems requires a comprehensive understanding of propeller performance characteristics under various operating conditions. While experimental testing traditionally provides reliable data for propeller performance curves at different cruising speeds and rotational velocities the associated costs and time investments have driven researchers toward alternative evaluation methods including computational and analytical approaches. This research presents a detailed computational investigation of a quadrotor unmanned aerial vehicles propeller focusing on two critical performance aspects thrust coefficient variation and aeroacoustic behaviour. The study employed computational fluid dynamics simulations to analyze a 9-inch propeller under vertical climbing conditions examining multiple advance ratios and rotational speeds. Computational accuracy was ensured through mesh independence studies which determined the optimal discretization of the solution domain. The CFD results demonstrated strong correlation with experimental data regarding thrust coefficient predictions, thereby validating the computational approach. The aeroacoustic analysis revealed favourable noise characteristics with the propeller maintaining consistently moderate sound pressure levels across all measured angular positions. These findings validate both the effectiveness of the computational methodology and confirm the balanced performance of the propeller design in terms of both aerodynamic efficiency and noise generation.

References

  • Ahmad, F., Kumar, P., Dobriyal, R. and Patil, P. P. (2021). Estimation of the thrust coefficient of a Quadcopter Propeller using Computational Fluid Dynamics. IOP Conference Series: Materials Science and Engineering, 1116, 012095. p.
  • Ahmad, F., Kumar, P., Pravin, P. and Kumar, V. (2021). Design and modal analysis of a Quadcopter propeller through finite element analysis. International Conference on Technological Advancements in Materials Science and Manufacturing, 46, 10322–10328. pp.
  • Al-Haddad, L. A., Giernacki, W., Basem, A., Khan, Z. H., Jaber, A. A. and Al-Haddad, S. A. (2024). UAV propeller fault diagnosis using deep learning of non-traditional χ2-selected Taguchi method-tested Lempel–Ziv complexity and Teager–Kaiser energy features. Scientific Reports, 14(1), 18599. p.
  • Anh Vu, C. T., Van Hung, Phan, Dinh Chien ,Dang, Thai ,Vu Dang and and Quang, P. K. (2025). Improving energy efficiency for fishing vessels using two-pitch propellers. Journal of International Maritime Safety, Environmental Affairs, and Shipping, 9(1), 2460136. p.
  • Brandt, J. B. (2005). Small-scale propeller performance at low speeds. University of Illinois at Urbana- Champaign.
  • Çelebi, Y. and Aydın, H. (2025a). Multirotor Unmanned Aerial Vehicle Systems: An In-Depth Analysis of Hardware, Software, And Communication Systems. Journal of Aviation, 9(1), 225–240. pp.
  • Çelebi, Y. and Aydın, H. (2025b). Analysis of Directional Stability of A Quadcopter for Different Propeller Designs Using Experimental and Computational Fluid Dynamics Applications. Politeknik Dergisi, 1–1. pp.
  • Çelebi, Y., Cengiz, M. and Aydın, H. (2024). Propeller Design of UAV Under Low Reynolds Numbers. In Article and Reviews in Engineering Sciences (407–438. pp.). Platanus Publishing.
  • Céspedes, J. F. and Lopez, O. D. (2019). Simulation and validation of the aerodynamic performance of a quadcopter in hover condition using overset mesh. In AIAA Aviation 2019 Forum (Vol. 1–0). American Institute of Aeronautics and Astronautics.
  • Ciattaglia, G., Iadarola, G., Senigagliesi, L., Spinsante, S. and Gambi, E. (2023). UAV Propeller Rotational Speed Measurement through FMCW Radars. Remote Sensing, 15(1).
  • Cruzatty, C., Sarmiento, E., Valencia, E. and Cando, E. (2022). Design methodology of a UAV propeller implemented in monitoring activities. Advances in Mechanical Engineering Trends, 49, 115–121. pp.
  • de Carvalho, P. H., Cuenca, R. G. and da Silva, F. D. (2023). Cob-2023-1717 on the prediction of propeller tonal noise with machine learning. 27th ABCM International Congress of Mechanical Engineering.
  • Del Duchetto, F., Pagliaroli, T., Candeloro, P., Rossignol, K.-S. and Yin, J. (2025). Aeroacoustic Study of Synchronized Rotors. Aerospace, 12(2).
  • Du Plessis, J. and Bouferrouk, A. (2024). Aerodynamic and Aeroacoustic Analysis of Looped Propeller Blades. 3156. p.
  • Durmuş, S. (2024). Statistical Analysis of Airfoil Usage in Aircraft. Journal of Aviation, 8(3), 214–220. pp.
  • Eraslan, Y. and Oktay, T. (2021). Numerical Investigation of Effects of Airspeed and Rotational Speed on Quadrotor UAV Propeller Thrust Coefficient. Journal of Aviation, 5(1), 9–15. pp.
  • Hairudin, W. M., Mat, M. N. H., Ooi, L. E. and Ismail, N. A. (2024). Co-simulation approach for computational aero-acoustic modeling: Investigating wind-induced noise within two-way radio microphone ports cavity. Journal of Mechanical Engineering and Sciences, 18(1), 9909–9927. pp.
  • J. Lu, W. Nie, P. Xing, Z. Wang, Y. Cao, J. Wang, and Z. Xi. (2025). An EKF Based on Aerodynamic Constraints for Fixed-Wing AAV Attitude Estimation. IEEE Sensors Journal, 25(9), 14860–14874. pp.
  • Jin, J., Ye, Y., Li, X., Li, L., Shan, M. and Sun, J. (2025). A Deep Learning-Based Mapping Model for Three- Dimensional Propeller RANS and LES Flow Fields. Applied Sciences, 15(1).
  • Jordan, W. A., Narsipur, S. and Deters, R. (2020). Aerodynamic and Aeroacoustic Performance of Small UAV Propellers in Static Conditions. In AIAA AVIATION 2020 FORUM (Vol. 1–0). American Institute of Aeronautics and Astronautics.
  • Lasota, M., Šidlof, P., Kaltenbacher, M. and Schoder, S. (2021). Impact of the Sub-Grid Scale Turbulence Model in Aeroacoustic Simulation of Human Voice. Applied Sciences, 11(4).
  • Li, J., Zhang, M., Tay, C. M. J., Liu, N., Cui, Y., Chew, S. C. and Khoo, B. C. (2022). Low-Reynolds-number airfoil design optimization using deep-learning-based tailored airfoil modes. Aerospace Science and Technology, 121, 107309. p.
  • McKay, R. S., Kingan, M. J., Go, S. T. and Jung, R. (2021). Experimental and analytical investigation of contra- rotating multi-rotor UAV propeller noise. Applied Acoustics, 177, 107850. p.
  • Nikolaou, E., Karatzas, E., Kilimtzidis, S. and Kostopoulos, V. (2025). Winglet Design for Class I Mini UAV— Aerodynamic and Performance Optimization. Engineering Proceedings, 90(1).
  • Oktay, T. and Eraslan, Y. (2020). Computational fluid dynamics (Cfd) investigation of a quadrotor UAV propeller. 1–5. pp.
  • Özen, E. and Oktay, T. (2024). Maximization of Flight Performance of Eight-Rotor Multirotor with Differentiated Hub Angle. Journal of Aviation, 8(3), 206–213. pp.
  • Yıldırım Dalkıran, F. and Kırteke, E. (2024). Design and Implementation of A Low-Cost Parachute Landing System for Fixed-Wing Mini Unmanned Aerial Vehicles. Journal of Aviation, 8(3), 198–205. pp.
  • You, K., Zhao, X., Zhao, S.-Z. and Faisal, M. (2020). Design and Optimization of a High-altitude Long Endurance UAV Propeller. IOP Conference Series: Materials Science and Engineering, 926(1), 012018. p.
There are 28 citations in total.

Details

Primary Language English
Subjects Flight Dynamics
Journal Section Research Articles
Authors

Yahya Çelebi 0000-0002-4686-9794

Ahmet Aydın 0000-0003-1558-0960

Selman Aydın 0000-0001-9685-9853

Publication Date June 28, 2025
Submission Date February 13, 2025
Acceptance Date June 11, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Çelebi, Y., Aydın, A., & Aydın, S. (2025). Computational Evaluation of Aerodynamics and Aeroacoustics of a Propeller for a Multirotor Unmanned Aerial Vehicle. Journal of Aviation, 9(2), 277-284. https://doi.org/10.30518/jav.1638955

Journal of Aviation - JAV 


www.javsci.com - editor@javsci.com


9210This journal is licenced under a Creative Commons Attiribution-NonCommerical 4.0 İnternational Licence