Review
BibTex RIS Cite
Year 2021, Volume: 5 Issue: 1, 88 - 93, 26.02.2021
https://doi.org/10.30621/jbachs.869310

Abstract

Supporting Institution

Dokuz Eylül Üniversitesi Bilimsel Araştırmalar Koordinatörlüğü

Project Number

2020.KB.SAG.039

References

  • 1. Longley DB, Allen WL, Johnston PG. Drug resistance, predictive markers and pharmacogenomics in colorectal cancer. Biochim Biophys Acta. 2006; 1766(2):184-196.
  • 2. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019; 394(10207):1467-1480.
  • 3. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019; 575(7782):299-309.
  • 4. Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist 2019; 2:141-160.
  • 5. Goldie, J. H. & Coldman, A. J. The genetic origin of drug resistance in neoplasms: implications for systemic therapy. Cancer Res 1984; 44:3643–3653.
  • 6. Goldie JH, Coldman AJ. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep. 1979 ;63(11-12):1727-1733.
  • 7. Norton, L., Simon, R., Brereton, H. D. & Bogden, A. E. Predicting the course of Gompertzian growth. Nature 1976; 264:542–545.
  • 8. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018; 15(2):81–94.
  • 9. Sutherland KD, Visvader JE. Cellular Mechanisms Underlying Intertumoral Heterogeneity. Trends Cancer. 2015; 1(1):15-23.
  • 10. Hinohara K, Polyak K. Intratumoral Heterogeneity: More Than Just Mutations. Trends Cell Biol. 2019; 29(7):569-579.
  • 11. Gausachs M, Borras E, Chang K, et al. Mutational Heterogeneity in APC and KRAS Arises at the Crypt Level and Leads to Polyclonality in Early Colorectal Tumorigenesis. Clin Cancer Res. 2017; 23(19):5936–5947.
  • 12. Sun Y. Tumor microenvironment and cancer therapy resistance. Cancer Lett. 2016; 380(1):205–215.
  • 13. Haider T, Pandey V, Banjare N, Gupta PN, Soni V. Drug resistance in cancer: mechanisms and tackling strategies. Pharmacol Rep. 2020; 72(5):1125-1151.
  • 14. Deng J, Wang Y, Lei J, Lei W, Xiong JP. Insights into the involvement of noncoding RNAs in 5-fluorouracil drug resistance. Tumour Biol. 2017; 39(4):1010428317697553.
  • 15. Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003; 3(5):330-338.
  • 16. Cao X, Hou J, An Q, Assaraf YG, Wang X. Towards the overcoming of anticancer drug resistance mediated by p53 mutations. Drug Resist Updat. 2020; 49:100671.
  • 17. Blondy S, David V, Verdier M, Mathonnet M, Perraud A, Christou N. 5-Fluorouracil resistance mechanisms in colorectal cancer: From classical pathways to promising processes. Cancer Sci. 2020; 111(9):3142-3154.
  • 18. Fujii R, Seshimo A, Kameoka S. Relationships between the expression of thymidylate synthase, dihydropyrimidine dehydrogenase, and orotate phosphoribosyltransferase and cell proliferative activity and 5-fluorouracil sensitivity in colorectal carcinoma. Int J Clin Oncol. 2003; 8(2):72-78.
  • 19. Humeniuk R, Menon LG, Mishra PJ, et al. Decreased levels of UMP kinase as a mechanism of fluoropyrimidine resistance. Mol Cancer Ther. 2009; 8(5):1037-1044.
  • 20. Furukawa T, Tabata S, Yamamoto M, et al. Thymidine phosphorylase in cancer aggressiveness and chemoresistance. Pharmacol Res. 2018; 132:15-20.
  • 21. Van der Jeught K, Xu HC, Li YJ, Lu XB, Ji G. Drug resistance and new therapies in colorectal cancer. World J Gastroenterol. 2018; 24(34):3834-3848.
  • 22. Stark M, Bram EE, Akerman M, Mandel-Gutfreund Y, Assaraf YG. Heterogeneous nuclear ribonucleoprotein H1/H2-dependent unsplicing of thymidine phosphorylase results in anticancer drug resistance. J Biol Chem. 2011; 286(5):3741-3754.
  • 23. Xu Y, Villalona-Calero MA. Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity. Ann Oncol. 2002; 13(12):1841-1851.
  • 24. Bailly C. Irinotecan: 25 years of cancer treatment. Pharmacol Res. 2019; 148:104398.
  • 25. Hicks LD, Hyatt JL, Stoddard S, et al. Improved, selective, human intestinal carboxylesterase inhibitors designed to modulate 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (Irinotecan; CPT-11) toxicity. J Med Chem. 2009; 52(12):3742-3752.
  • 26. Liu LF, Duann P, Lin CT, D'Arpa P, Wu J. Mechanism of action of camptothecin. Ann N Y Acad Sci. 1996; 803:44-49.
  • 27. de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S. Individualization of Irinotecan Treatment: A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics. Clin Pharmacokinet. 2018; 57(10):1229-1254.
  • 28. Gmeiner WH. Entrapment of DNA topoisomerase-DNA complexes by nucleotide/nucleoside analogs. Cancer Drug Resist. 2019; 2:994-1001.
  • 29. Trumpi K, Emmink BL, Prins AM, et al. ABC-Transporter Expression Does Not Correlate with Response to Irinotecan in Patients with Metastatic Colorectal Cancer. J Cancer. 2015; 6(11):1079-1086.
  • 30. Takano M, Sugiyama T. UGT1A1 polymorphisms in cancer: impact on irinotecan treatment. Pharmgenomics Pers Med. 2017; 10:61-68.
  • 31. Graham MA, Lockwood GF, Greenslade D, Brienza S, Bayssas M, Gamelin E. Clinical pharmacokinetics of oxaliplatin: a critical review. Clin Cancer Res. 2000; 6(4):1205-1218.
  • 32. Martinez-Balibrea E, Martínez-Cardús A, Ginés A, et al. Tumor-Related Molecular Mechanisms of Oxaliplatin Resistance. Mol Cancer Ther. 2015; 14(8):1767-1776.
  • 33. Burger H, Loos WJ, Eechoute K, Verweij J, Mathijssen RH, Wiemer EA. Drug transporters of platinum-based anticancer agents and their clinical significance. Drug Resist Updat. 2011; 14(1):22-34.
  • 34. Gao H, Zhang S, Hu T, et al. Omeprazole protects against cisplatin-induced nephrotoxicity by alleviating oxidative stress, inflammation, and transporter-mediated cisplatin accumulation in rats and HK-2 cells. Chem Biol Interact. 2019; 297:130-140.
  • 35. Mao L, Li Y, Zhao J, et al. Transforming growth factor-β1 contributes to oxaliplatin resistance in colorectal cancer via epithelial to mesenchymal transition. Oncol Lett. 2017; 14(1):647-654.

Drug Resistance Mechanisms on Colorectal Cancer

Year 2021, Volume: 5 Issue: 1, 88 - 93, 26.02.2021
https://doi.org/10.30621/jbachs.869310

Abstract

Standard treatment for colorectal cancer includes surgery, radiotherapy, and chemotherapy. Conventional chemotherapeutic agents used in colorectal cancer such as 5-fluorouracil, capecitabine which is oral form of 5-fluorouracil, irinotecan, and oxaliplatin. One of the major challenges in chemotherapy considered as drug resistance. Drug resistance occurs in many different mechanisms such as alteration in tumor microenvironment, growth kinetics, genetic variations, and tumor heterogeneity. These cytotoxic agents are used in combination form to overcome drug resistance on colorectal cancer. They can also be used in combination with cytotoxic agents as bevacizumab and cetuximab. Combination therapy depends on tumor burden, type, stage, and molecular characteristics. It is crucial to choose the combination therapy to be applied by taking these factors into consideration. In this review, current drug resistance mechanisms were discussed and then mechanisms of conventional chemotherapy related resistance were explained.

Project Number

2020.KB.SAG.039

References

  • 1. Longley DB, Allen WL, Johnston PG. Drug resistance, predictive markers and pharmacogenomics in colorectal cancer. Biochim Biophys Acta. 2006; 1766(2):184-196.
  • 2. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019; 394(10207):1467-1480.
  • 3. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019; 575(7782):299-309.
  • 4. Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist 2019; 2:141-160.
  • 5. Goldie, J. H. & Coldman, A. J. The genetic origin of drug resistance in neoplasms: implications for systemic therapy. Cancer Res 1984; 44:3643–3653.
  • 6. Goldie JH, Coldman AJ. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep. 1979 ;63(11-12):1727-1733.
  • 7. Norton, L., Simon, R., Brereton, H. D. & Bogden, A. E. Predicting the course of Gompertzian growth. Nature 1976; 264:542–545.
  • 8. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018; 15(2):81–94.
  • 9. Sutherland KD, Visvader JE. Cellular Mechanisms Underlying Intertumoral Heterogeneity. Trends Cancer. 2015; 1(1):15-23.
  • 10. Hinohara K, Polyak K. Intratumoral Heterogeneity: More Than Just Mutations. Trends Cell Biol. 2019; 29(7):569-579.
  • 11. Gausachs M, Borras E, Chang K, et al. Mutational Heterogeneity in APC and KRAS Arises at the Crypt Level and Leads to Polyclonality in Early Colorectal Tumorigenesis. Clin Cancer Res. 2017; 23(19):5936–5947.
  • 12. Sun Y. Tumor microenvironment and cancer therapy resistance. Cancer Lett. 2016; 380(1):205–215.
  • 13. Haider T, Pandey V, Banjare N, Gupta PN, Soni V. Drug resistance in cancer: mechanisms and tackling strategies. Pharmacol Rep. 2020; 72(5):1125-1151.
  • 14. Deng J, Wang Y, Lei J, Lei W, Xiong JP. Insights into the involvement of noncoding RNAs in 5-fluorouracil drug resistance. Tumour Biol. 2017; 39(4):1010428317697553.
  • 15. Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003; 3(5):330-338.
  • 16. Cao X, Hou J, An Q, Assaraf YG, Wang X. Towards the overcoming of anticancer drug resistance mediated by p53 mutations. Drug Resist Updat. 2020; 49:100671.
  • 17. Blondy S, David V, Verdier M, Mathonnet M, Perraud A, Christou N. 5-Fluorouracil resistance mechanisms in colorectal cancer: From classical pathways to promising processes. Cancer Sci. 2020; 111(9):3142-3154.
  • 18. Fujii R, Seshimo A, Kameoka S. Relationships between the expression of thymidylate synthase, dihydropyrimidine dehydrogenase, and orotate phosphoribosyltransferase and cell proliferative activity and 5-fluorouracil sensitivity in colorectal carcinoma. Int J Clin Oncol. 2003; 8(2):72-78.
  • 19. Humeniuk R, Menon LG, Mishra PJ, et al. Decreased levels of UMP kinase as a mechanism of fluoropyrimidine resistance. Mol Cancer Ther. 2009; 8(5):1037-1044.
  • 20. Furukawa T, Tabata S, Yamamoto M, et al. Thymidine phosphorylase in cancer aggressiveness and chemoresistance. Pharmacol Res. 2018; 132:15-20.
  • 21. Van der Jeught K, Xu HC, Li YJ, Lu XB, Ji G. Drug resistance and new therapies in colorectal cancer. World J Gastroenterol. 2018; 24(34):3834-3848.
  • 22. Stark M, Bram EE, Akerman M, Mandel-Gutfreund Y, Assaraf YG. Heterogeneous nuclear ribonucleoprotein H1/H2-dependent unsplicing of thymidine phosphorylase results in anticancer drug resistance. J Biol Chem. 2011; 286(5):3741-3754.
  • 23. Xu Y, Villalona-Calero MA. Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity. Ann Oncol. 2002; 13(12):1841-1851.
  • 24. Bailly C. Irinotecan: 25 years of cancer treatment. Pharmacol Res. 2019; 148:104398.
  • 25. Hicks LD, Hyatt JL, Stoddard S, et al. Improved, selective, human intestinal carboxylesterase inhibitors designed to modulate 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (Irinotecan; CPT-11) toxicity. J Med Chem. 2009; 52(12):3742-3752.
  • 26. Liu LF, Duann P, Lin CT, D'Arpa P, Wu J. Mechanism of action of camptothecin. Ann N Y Acad Sci. 1996; 803:44-49.
  • 27. de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S. Individualization of Irinotecan Treatment: A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics. Clin Pharmacokinet. 2018; 57(10):1229-1254.
  • 28. Gmeiner WH. Entrapment of DNA topoisomerase-DNA complexes by nucleotide/nucleoside analogs. Cancer Drug Resist. 2019; 2:994-1001.
  • 29. Trumpi K, Emmink BL, Prins AM, et al. ABC-Transporter Expression Does Not Correlate with Response to Irinotecan in Patients with Metastatic Colorectal Cancer. J Cancer. 2015; 6(11):1079-1086.
  • 30. Takano M, Sugiyama T. UGT1A1 polymorphisms in cancer: impact on irinotecan treatment. Pharmgenomics Pers Med. 2017; 10:61-68.
  • 31. Graham MA, Lockwood GF, Greenslade D, Brienza S, Bayssas M, Gamelin E. Clinical pharmacokinetics of oxaliplatin: a critical review. Clin Cancer Res. 2000; 6(4):1205-1218.
  • 32. Martinez-Balibrea E, Martínez-Cardús A, Ginés A, et al. Tumor-Related Molecular Mechanisms of Oxaliplatin Resistance. Mol Cancer Ther. 2015; 14(8):1767-1776.
  • 33. Burger H, Loos WJ, Eechoute K, Verweij J, Mathijssen RH, Wiemer EA. Drug transporters of platinum-based anticancer agents and their clinical significance. Drug Resist Updat. 2011; 14(1):22-34.
  • 34. Gao H, Zhang S, Hu T, et al. Omeprazole protects against cisplatin-induced nephrotoxicity by alleviating oxidative stress, inflammation, and transporter-mediated cisplatin accumulation in rats and HK-2 cells. Chem Biol Interact. 2019; 297:130-140.
  • 35. Mao L, Li Y, Zhao J, et al. Transforming growth factor-β1 contributes to oxaliplatin resistance in colorectal cancer via epithelial to mesenchymal transition. Oncol Lett. 2017; 14(1):647-654.
There are 35 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Reviews
Authors

Hasan Kurter 0000-0001-6851-5279

Janberk Yeşil 0000-0002-3291-0477

Ezgi Daskın 0000-0001-6542-2608

Gizem Çalıbaşı Koçal 0000-0002-3201-4752

Hülya Ellidokuz 0000-0001-8503-061X

Yasemin Başbınar 0000-0001-9439-2217

Project Number 2020.KB.SAG.039
Publication Date February 26, 2021
Submission Date January 7, 2021
Published in Issue Year 2021 Volume: 5 Issue: 1

Cite

APA Kurter, H., Yeşil, J., Daskın, E., Çalıbaşı Koçal, G., et al. (2021). Drug Resistance Mechanisms on Colorectal Cancer. Journal of Basic and Clinical Health Sciences, 5(1), 88-93. https://doi.org/10.30621/jbachs.869310
AMA Kurter H, Yeşil J, Daskın E, Çalıbaşı Koçal G, Ellidokuz H, Başbınar Y. Drug Resistance Mechanisms on Colorectal Cancer. JBACHS. February 2021;5(1):88-93. doi:10.30621/jbachs.869310
Chicago Kurter, Hasan, Janberk Yeşil, Ezgi Daskın, Gizem Çalıbaşı Koçal, Hülya Ellidokuz, and Yasemin Başbınar. “Drug Resistance Mechanisms on Colorectal Cancer”. Journal of Basic and Clinical Health Sciences 5, no. 1 (February 2021): 88-93. https://doi.org/10.30621/jbachs.869310.
EndNote Kurter H, Yeşil J, Daskın E, Çalıbaşı Koçal G, Ellidokuz H, Başbınar Y (February 1, 2021) Drug Resistance Mechanisms on Colorectal Cancer. Journal of Basic and Clinical Health Sciences 5 1 88–93.
IEEE H. Kurter, J. Yeşil, E. Daskın, G. Çalıbaşı Koçal, H. Ellidokuz, and Y. Başbınar, “Drug Resistance Mechanisms on Colorectal Cancer”, JBACHS, vol. 5, no. 1, pp. 88–93, 2021, doi: 10.30621/jbachs.869310.
ISNAD Kurter, Hasan et al. “Drug Resistance Mechanisms on Colorectal Cancer”. Journal of Basic and Clinical Health Sciences 5/1 (February 2021), 88-93. https://doi.org/10.30621/jbachs.869310.
JAMA Kurter H, Yeşil J, Daskın E, Çalıbaşı Koçal G, Ellidokuz H, Başbınar Y. Drug Resistance Mechanisms on Colorectal Cancer. JBACHS. 2021;5:88–93.
MLA Kurter, Hasan et al. “Drug Resistance Mechanisms on Colorectal Cancer”. Journal of Basic and Clinical Health Sciences, vol. 5, no. 1, 2021, pp. 88-93, doi:10.30621/jbachs.869310.
Vancouver Kurter H, Yeşil J, Daskın E, Çalıbaşı Koçal G, Ellidokuz H, Başbınar Y. Drug Resistance Mechanisms on Colorectal Cancer. JBACHS. 2021;5(1):88-93.