Araştırma Makalesi
BibTex RIS Kaynak Göster

Mandibular asimetri ve asemptomatik denekler arasındaki temporomandibular eklemde biyomekanik karşılaştırmanın modifiye sonlu elemanlar modellerini kullanarak yapılması

Yıl 2020, Cilt: 32 Sayı: 3, 212 - 218, 01.09.2020
https://doi.org/10.7240/jeps.607841

Öz

Mandibular
asimetri ve asemptomatik denekleri olan hastalar arasındaki temporomandibular
eklemlerdeki (TME) gerilme dağılımlarının farklılıkları, modifiye üç boyutlu
(3D) sonlu elemanlar (SE) modelleri kullanılarak karşılaştırıldı. On
asemptomatik denek ve on mandibular asimetrik hasta sırasıyla Kontrol ve Vaka
grubunu oluştulmuştur. Homojen olmayan malzeme özellikleri, bilgisayarlı
tomografiye (CBCT) göre yeniden yapılandırılan mandibula ve maksilla SE
modellerinde kullanılmıştır. Etkileşim yüzeyleri temas elemanları olarak işlem
görmüştür. Kuvvetler ve sınır şartları, iki tıkanmaya karşılık gelen iki gruba
uygulanmıştır. Simülasyon, olgu grubundaki merkezi ve ön oklüzyonlar altında
TME'lerin gerilmesindeki sapma olmayan ve sapma tarafları arasındaki anlamlı
farkları ortaya koymuştur (p <0.05). Vaka grubundaki von Mises gerilmeleri,
özellikle sapmamış taraftaki Kontrol grubundakilerden anlamlı derecede daha
yüksek oluştu. Hastaların TME'sinde anormal dağılımlar ve stres konsantrasyonu
da bulunmuştur. Sonuç olarak, modifiye SE modelleri, maksillofasiyal sistemi
simüle etmek için daha gerçekçi bir yol sağlamıştır. Ayrıca, mandibular
asimetri, TME'nin gerilmesini artırabilir. Mandibular asimetrisi olan
hastalarda TME'nin aşırı gerilmeleri temporomandibular bozukluklarla (TMD)
ilişkiliydi.

Kaynakça

  • [1] Bergersen EO (1980) Enlargement and distortion in cephalometric radiography – compensation tables for linear measurements. Angle Orthodontist 50:230-244[2] Bishara SE, Burkey PS, Kharouf JG (1994) Dental and facial asymmetries - a review. Angle Orthodontist 64:89-98[3] Ramirez-Yanez GO, Stewart A, Franken E, Campos K (2011) Prevalence of mandibular asymmetries in growing patients. European journal of orthodontics 33:236-242[4] Haraguchi S, Iguchi Y, Takada K (2008) Asymmetry of the face in orthodontic patients. The Angle orthodontist 78:421-426[5] Goncalves JR, Wolford LM, Cassano DS, da Porciuncula G, Paniagua B, Cevidanes LH (2013) Temporomandibular joint condylar changes following maxillomandibular advancement and articular disc repositioning. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons 71:1759 e1751-1715. doi:10.1016/j.joms.2013.06.209[6] Ueki K, Moroi A, Sotobori M, Ishihara Y, Marukawa K, Yoshizawa K, Kato K, Kawashiri S (2012) Changes in temporomandibular joint and ramus after sagittal split ramus osteotomy in mandibular prognathism patients with and without asymmetry. The Journal of craniofacial surgery 40:821-827. doi:10.1016/j.jcms.2012.03.003[7] Sanromán JF, González JMG, del Hoyo JA (1998) Relationship between condylar position, dentofacial deformity and temporomandibular joint dysfunction: An mri and ct prospective study. The Journal of craniofacial surgery 26:35-42[8] Ueki K, Nakagawa K, Marukawa K, Takatsuka S, Yamamoto E (2005) The relationship between temporomandibular joint disc morphology and stress angulation in skeletal Class III patients. European journal of orthodontics 27:501-506. doi:10.1093/ejo/cji029[9] Yang HJ, Hwang SJ (2014) Change in condylar position in posterior bending osteotomy minimizing condylar torque in BSSRO for facial asymmetry. The Journal of craniofacial surgery 42:325-332. doi:10.1016/j.jcms.2013.05.021[10] 1Liu Z, Qian Y, Liu D, Yang J, Fan Y (2010) Stress analysis of first permanent mandibular molar with class 1 restorations of different cement bases by occlusive load: A finite element analysis. International Journal for Numerical Methods in Biomedical Engineering 26:1371-1379. doi:10.1002/cnm.1395[11] Qian Y, Liu Z, Fan Y (2010) Numerical simulation of canine bodily movement. International Journal for Numerical Methods in Biomedical Engineering:n/a-n/a. doi:10.1002/cnm.1179[12] Chen J, Akyuz U, Xu L, Pidaparti RMV (1998) Stress analysis of the human temporomandibular joint. Medical engineering & physics 20:565-572[13] Qihong L, Shuang R, Cheng G, Haiyan S, Hong L, Yinzhong D, Qiguo R (2014) Effect of jaw opening on the stress pattern in a normal human articular disc: finite element analysis based on MRI images. Head & face medicine 10[14] Reina-Romo E, Sampietro-Fuentes A, Gomez-Benito MJ, Dominguez J, Doblare M, Garcia-Aznar JM (2010) Biomechanical response of a mandible in a patient affected with hemifacial microsomia before and after distraction osteogenesis. Medical engineering & physics 32:860-866. doi:10.1016/j.medengphy.2010.05.012[15] Abe S, Kawano F, Kohge K, Kawaoka T, Ueda K, Hattori-Hara E, Mori H, Kuroda S, Tanaka E (2013) Stress analysis in human temporomandibular joint affected by anterior disc displacement during prolonged clenching. Journal of oral rehabilitation 50:230-244[16] Buranastidporn B, Hisano M, Soma K (2006) Effect of biomechanical disturbance of the temporomandibular joint on the prevalence of internal derangement in mandibular asymmetry. European journal of orthodontics 28:199-205[17] Kopp S, Kuzelka J, Goldmann T, Himmlova L, Ihde S (2011) Modeling of load transmission and distribution of deformation energy before and after healing of basal dental implants in the human mandible. Biomedizinische Technik Biomedical engineering 56:53-58. doi:10.1515/BMT.2010.053[18] 18. Ueki K, Nakagawa K, Takatsuka S, Shimada M, Marukawa K, Takazakura D, Yamamoto E (2000) Temporomandibular joint morphology and disc position in skeletal class III patients. The Journal of craniofacial surgery 28:362-368. doi:10.1054/jcms.2000.0181[19] Shu JH, Yao J, Zhang YL, Chong DYR, Liu Z (2018) The influence of bilateral sagittal split ramus osteotomy on the stress distributions in the temporomandibular joints of the patients with facial asymmetry under symmetric occlusions. Medicine 97:e11204. doi:10.1097/MD.0000000000011204[20] Ciarelli MJ, Goldstein SA, Kuhn JL, Cody DD, Brown MB (1991) Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. J Orthop Res 9:674-682[21] Harp JH, Aronson J, Hollis M (1994) Noninvasive determination of bone stiffness for distraction osteogenesis by quantitative computed tomography scans. Clin Orthop Relat Res:42-48[22] Kopperdahl DL, Morgan EF, Keaveny TM (2002) Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone. J Orthop Res 20:801-805[23] Rho JY, Hobatho MC, Ashman RB (1995) Relations of mechanical properties to density and ct numbers in human bone. Medical engineering & physics 17:347-355[24] Liu Z, Fan Y, Qian Y (2008) Comparative evaluation on three-dimensional finite element models of the temporomandibular joint. Clinical biomechanics 23 Suppl 1:S53-58. doi:10.1016/j.clinbiomech.2007.12.011[25] Korioth TW, Hannam AG (1994) Deformation of the human mandible during simulated tooth clenching. Journal of dental research 73:56-66[26] Pruim GJ, de Jongh HJ, ten Bosch JJ (1980) Forces acting on the mandible during bilateral static bite at different bite force levels. Journal of biomechanics 13:755-763[27] Weijs WA, Hillen B (1984) Relationship between the physiological cross-section of the human jaw muscles and their cross-sectional area in computer tomograms. Acta Anatomica 118:129-138[28] Liu Z, Qian YL, Zhang YL, Fan YB (2016) Effects of several temporomandibular disorders on the stress distributions of temporomandibular joint: A finite element analysis. Computer Methods in Biomechanics and Biomedical Engineering 19:137-143[29] Qi XD, Ma LM, Zhong SZ (2012) The influence of the closing and opening muscle groups of jaw condyle biomechanics after mandible bilateral sagittal split ramus osteotomy. The Journal of craniofacial surgery 40:e159-164. doi:10.1016/j.jcms.2011.07.024[30] Zhang YL (2017) The Effect of Bilateral Sagittal Split Ramus Osteotomy on Temporomandibular Joints in Patients with Facial Asymmetry: a Morphologic and Biomechanical Study. PhD Thesis, Sichuan University, Chengdu[31] Zhang Y, Xu X, Liu Z (2017) Comparison of Morphologic Parameters of Temporomandibular Joint for Asymptomatic Subjects Using the Two-Dimensional and Three-Dimensional Measuring Methods. Journal of Healthcare Engineering 2017:1-8. doi:10.1155/2017/5680708[32] Ueki K, Yoshizawa K, Moroi A, Iguchi R, Kosaka A, Ikawa H, Saida Y, Hotta A, Tsutsui T (2015) Changes in computed tomography values of mandibular condyle and temporomandibular joint disc position after sagittal split ramus osteotomy. The Journal of craniofacial surgery 43:1208-1217. doi:10.1016/j.jcms.2015.05.007[33] Beek M, Koolstra JH, van Ruijven LJ, van Eijden TMGJ (2000) Three-dimensional finite element analysis of the human temporomandibular joint disc. Journal of biomechanics 33:307-316[34] Kang H, Bao GJ, Qi SN (2006) Biomechanical responses of human temporomandibular joint disc under tension and compression. International journal of oral and maxillofacial surgery 35:817-821. doi:10.1016/j.ijom.2006.03.005
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Oğuz Kayabaşı 0000-0003-0129-1113

Yayımlanma Tarihi 1 Eylül 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 32 Sayı: 3

Kaynak Göster

APA Kayabaşı, O. (2020). Mandibular asimetri ve asemptomatik denekler arasındaki temporomandibular eklemde biyomekanik karşılaştırmanın modifiye sonlu elemanlar modellerini kullanarak yapılması. International Journal of Advances in Engineering and Pure Sciences, 32(3), 212-218. https://doi.org/10.7240/jeps.607841
AMA Kayabaşı O. Mandibular asimetri ve asemptomatik denekler arasındaki temporomandibular eklemde biyomekanik karşılaştırmanın modifiye sonlu elemanlar modellerini kullanarak yapılması. JEPS. Eylül 2020;32(3):212-218. doi:10.7240/jeps.607841
Chicago Kayabaşı, Oğuz. “Mandibular Asimetri Ve Asemptomatik Denekler arasındaki Temporomandibular Eklemde Biyomekanik karşılaştırmanın Modifiye Sonlu Elemanlar Modellerini Kullanarak yapılması”. International Journal of Advances in Engineering and Pure Sciences 32, sy. 3 (Eylül 2020): 212-18. https://doi.org/10.7240/jeps.607841.
EndNote Kayabaşı O (01 Eylül 2020) Mandibular asimetri ve asemptomatik denekler arasındaki temporomandibular eklemde biyomekanik karşılaştırmanın modifiye sonlu elemanlar modellerini kullanarak yapılması. International Journal of Advances in Engineering and Pure Sciences 32 3 212–218.
IEEE O. Kayabaşı, “Mandibular asimetri ve asemptomatik denekler arasındaki temporomandibular eklemde biyomekanik karşılaştırmanın modifiye sonlu elemanlar modellerini kullanarak yapılması”, JEPS, c. 32, sy. 3, ss. 212–218, 2020, doi: 10.7240/jeps.607841.
ISNAD Kayabaşı, Oğuz. “Mandibular Asimetri Ve Asemptomatik Denekler arasındaki Temporomandibular Eklemde Biyomekanik karşılaştırmanın Modifiye Sonlu Elemanlar Modellerini Kullanarak yapılması”. International Journal of Advances in Engineering and Pure Sciences 32/3 (Eylül 2020), 212-218. https://doi.org/10.7240/jeps.607841.
JAMA Kayabaşı O. Mandibular asimetri ve asemptomatik denekler arasındaki temporomandibular eklemde biyomekanik karşılaştırmanın modifiye sonlu elemanlar modellerini kullanarak yapılması. JEPS. 2020;32:212–218.
MLA Kayabaşı, Oğuz. “Mandibular Asimetri Ve Asemptomatik Denekler arasındaki Temporomandibular Eklemde Biyomekanik karşılaştırmanın Modifiye Sonlu Elemanlar Modellerini Kullanarak yapılması”. International Journal of Advances in Engineering and Pure Sciences, c. 32, sy. 3, 2020, ss. 212-8, doi:10.7240/jeps.607841.
Vancouver Kayabaşı O. Mandibular asimetri ve asemptomatik denekler arasındaki temporomandibular eklemde biyomekanik karşılaştırmanın modifiye sonlu elemanlar modellerini kullanarak yapılması. JEPS. 2020;32(3):212-8.