Araştırma Makalesi
BibTex RIS Kaynak Göster

Optimization of Boron Removal Process from Aqueous Solutions by Electrochemical Separation Method

Yıl 2025, Cilt: 37 Sayı: UYIK 2024 Special Issue, 88 - 95
https://doi.org/10.7240/jeps.1531483

Öz

Water, the most basic need of both humans and ecosystems, is being seriously polluted today with the development of technology and industry. Considering that water resources are limited and the probability of the world population experiencing water shortage soon is high, boron, which can cause water pollution and is an important mineral for our country, needs to be removed from the water. In this study, the removal of boron ions from aqueous solutions using an innovative electrochemical separation method was investigated. For this purpose, electrodes prepared by coating with activated carbon and electrochemical flow cell were used. Optimization of flow rate, potential applied to the cell and boron concentration parameters affecting boron adsorption efficiency under continuous flow conditions was carried out using the Box-Behnken experimental design method. Adsorption experiments of boron ions were carried out in the ranges of 1-5 ml/min flow rate, 0.5-1.5 V potential and 10-90 ppm boron concentration. According to the experimental design results, it was determined that flow rate was the most important parameter affecting boron removal among the three parameters studied. The optimum conditions with the highest boron adsorption efficiency (94.1%) were determined to be 1 ml/min flow rate, 0.5 V potential and 50 ppm boron concentration. Surface morphologies of the electrodes studied under optimum conditions were characterized using a scanning electron microscope.

Proje Numarası

123M952

Kaynakça

  • Ngwabebhoh, F.A., Mammadli, N., Yıldız, U. (2019). Bioinspired modified nanocellulose adsorbent for enhanced boron recovery from aqueous media: Optimization, kinetics, thermodynamics and reusability study. J. Environ. Chem. Eng., 7, 103281.
  • Xu, Y., Jiang, J.Q. (2008). Technologies for boron removal. Ind. Eng. Chem. Res., 47, 16-2410.
  • Yetgin, A.G., Dündar, O.A., Çakmakçı, E. (2023). Removal of boron from aqueous solution by modified cellulose. Biomass Convers. Biorefin., 13, 13081–13090.
  • Wolska, J., Bryjak, M. (2013). Methods for boron removal from aqueous solutions — A review, Desalination., 310, 18-24.
  • Kim, H., Kim, S., Kim, C. (2024). Enhanced boron removal without pre-pH adjustment via redox-mediated electrodialysis assisted by ion-exchange resins. J. Environ. Chem. Eng., 12(4), 113159.
  • Hilal, N., Kim, G.J., Somerfield, C. (2011). Boron removal from saline water: A comprehensive review. Desalination., 273, 23–35.
  • Guan, Z., Lv, J., Bai, P., Guo, X. (2016). Boron removal from aqueous solutions by adsorption — A review. Desalination., 383, 29–37.
  • Ee, L.Y., Chia, S.Y.R., Xue, K., Chin, S.Y., Cho, C.A.H., Tan, X.Y., Li, S.F.Y. (2023). Hyperbranched nanocellulose enabling rapid boron removal from aqueous environment. Chem. Eng. J., 454, 140218.
  • Akdağ, S., Keyikoglu, R., Karagunduz, A., Keskinler, B., Khataee, A., Yoon, Y. (2023). Recent advances in boron species removal and recovery using layered double hydroxides. Appl. Clay Sci., 233, 106814.
  • Çelebi, H., Şimşek, İ., Bahadır, T., Tulun, Ş., (2023). Use of banana peel for the removal of boron from aqueous solutions in the batch adsorption system. Int. J. Environ. Sci. Technol., 20, 161-176.
  • Lin, J.Y., Mahasti, N.N., Huang, Y.H. (2021). Recent advances in adsorption and coagulation for boron removal from wastewater: A comprehensive review. J. Hazard. Mater. 407, 124401.
  • Xia, N.N., Zhang, H.Y., Hu, Z.H., Kong, F., He, F. (2021). A functionalized bio-based material with abundant mesopores and catechol groups for efficient removal of boron. Chemosphere., 263, 128202.
  • Qiu, X., Sasaki, K., Hirajima, T., Ideta, K., Miyawaki, J. (2014). One-step synthesis of layered double hydroxide-intercalated gluconate for removal of borate. Sep Purif Technol., 123, 114-123.
  • Mutlu-Salmanli, O., Koyuncu, I. (2022). Boron removal and recovery from water and wastewater. Rev. Environ. Sci. Biotechnol., 21, 635–664.
  • Lin, J.Y., Mahasti, N.N.N., Huan, Y.H. (2021). Fluidized-bed crystallization of barium perborate for continuous boron removal from concentrated solution: Supersaturation as a master variable. Sep Purif Technol., 278, 119588.
  • Biçak, N., Bulutçu, N., Şenkal, B.F., Gazi, M. (2001). Modification of crosslinked glycidyl methacrylate-based polymers for boron-specific column extraction. React. Funct. Polym., 47, 175-184.
  • Wang, S., Bing, S., Zhang, H., Zhou, Y., Zhang, L., Gao, C. (2022). Surface engineering design of polyamide membranes for enhanced boron removal in seawater desalination. J. Membr. Sci., 651, 120425.
  • Ghiasi, S., Mohammadi, T., Tofighy, M.A. (2022). Hybrid nanofiltration thin film hollow fiber membranes with adsorptive supports containing bentonite and LDH nanoclays for boron removal. J. Membr. Sci. 655, 120576.
  • Tang, Y.P., Luo, L., Thong, Z., Chung, T.S. (2017). Recent advances in membrane materials and technologies for boron removal. J. Memb. Sci. 541, 434-446.
  • Guesmi, F., Louati, I., Hannachi, C., Hamrouni, B. (2020). Optimization of boron removal from water by electrodialysis using response surface methodology. Water Sci. Technol. 81, 293-300.
  • Khajeh, M. (2011). Optimization of process variables for essential oil components from Satureja hortensis by supercritical fluid extraction using Box-Behnken experimental design, J. Supercrit. Fluids, 55(3), 944-948.
  • Duranoğlu, D., Yılmaz, Y. (2024). Optimization of titanium dioxide production process for photocatalytic degradation of 2,4 dichlorophenoxyacetic acid. J. Fac. Eng. Archit. Gazi Univ., 39(1), 233-242.
  • Alrefaee, S.H., Aljohani, M., Alkhamis, K., Shaaban, F., El-Desouky, M.G., El-Bindary, A.A., El-Bindary, M.A. (2023). Adsorption and effective removal of organophosphorus pesticides from aqueous solution via novel metal-organic framework: Adsorption isotherms, kinetics, and optimization via Box-Behnken design. J. Mol. Liq., 384, 122206
  • Al-dhawi, B.N.S., Kutty, S.R.M., Hayder, G., Elnaim, B.M.E., Mnzool, M., Noor, A., Saeed, A.A.H., Al-Mahbashi, N.M.Y., Al-Nini, A., Jagaba, A.H. (2023). Adsorptive Removal of Boron by DIAION™ CRB05: Characterization, Kinetics, Isotherm, and Optimization by Response Surface Methodology. Processes., 11(2), 453.
  • Kluczka, J., Pudło, W., Krukiewicz, K. (2019). Boron adsorption removal by commercial and modified activated carbons, Chem. Eng. Res. Des., 147, 30–42.
  • Halim, A.A., Roslan, N.A., Yaacub, N.S., Latif, M.T. (2013). Boron removal from aqueous solution using curcumin-impregnated activated carbon, Sains Malaysiana, 42(9), 1293–1300.
  • Irawan, C., Kuo, Y.L., Liu, J.C. (2011). Treatment of boron-containing optoelectronic wastewater by precipitation process, Desalination, 280, 146-151.
  • Polat, S. (2024). Sürekli akış koşullarında sulu çözeltilerden bor giderimi için elektrokimyasal ayırma prosesi tasarlanması ve işletilmesi, Journal of Boron, 9(4), 135-142.
  • Gurten-Inal, I.I., Aktas, Z. (2020). Enhancing the performance of activated carbon based scalable supercapacitors by heat treatment, Appl. Surf. Sci., 514, 145895.

Elektrokimyasal Ayırma Yöntemi ile Sulu Çözeltilerden Bor Giderim Prosesinin Optimizasyonu

Yıl 2025, Cilt: 37 Sayı: UYIK 2024 Special Issue, 88 - 95
https://doi.org/10.7240/jeps.1531483

Öz

Canlı yaşamının en temel ihtiyacı su, günümüzde teknolojinin ve endüstri alanlarının gelişmesiyle beraber ciddi oranda kirlenmektedir. Su kaynaklarının kısıtlı olması ve yakın gelecekte dünya nüfusunun su sıkıntısı yaşama olasılığının yüksek olduğu göz önüne alındığında, su kirliliğine sebep olabilen ve ülkemiz için önemli bir mineral olan borun sulardan uzaklaştırılması gerekmektedir. Bu kapsamda bu çalışmada, bor iyonlarının sulu çözeltilerden yenilikçi elektrokimyasal ayırma yöntemi kullanılarak giderilmesi incelenmiştir. Bu amaçla, aktif karbon ile kaplanarak hazırlanmış elektrotlar ve elektrokimyasal akış hücresi kullanılmıştır. Sürekli akış koşullarında bor adsorpsiyon verimini etkileyen akış hızı, hücreye uygulanan potansiyel ve bor konsantrasyonu parametrelerinin optimizasyonu Box-Behnken deney tasarımı yöntemi kullanılarak gerçekleştirilmiştir. 1-5 ml/dak akış hızı, 0,5-1,5 V potansiyel ve 10-90 ppm bor konsantrasyonu aralıklarında bor iyonlarının adsorpsiyon deneyleri yapılmıştır. Deney tasarımı sonuçlarına göre, çalışılan üç parametre arasından akış hızının bor giderimini etkileyen en önemli parametre olduğu belirlenmiştir. Bor adsorpsiyon veriminin en yüksek olduğu (%94,1) optimum koşullar 1 ml/dak akış hızı, 0,5 V potansiyel ve 50 ppm bor konsantrasyonu olarak tespit edilmiştir. Ayrıca, optimum koşullarda çalışılan elektrotların yüzey morfolojileri taramalı elektron mikroskobu kullanılarak karakterize edilmiştir.

Destekleyen Kurum

TUBİTAK

Proje Numarası

123M952

Teşekkür

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 123M952 numaralı proje ile desteklenmiştir. Projeye verdiği destekten ötürü TÜBİTAK’a teşekkürlerimi sunarım.

Kaynakça

  • Ngwabebhoh, F.A., Mammadli, N., Yıldız, U. (2019). Bioinspired modified nanocellulose adsorbent for enhanced boron recovery from aqueous media: Optimization, kinetics, thermodynamics and reusability study. J. Environ. Chem. Eng., 7, 103281.
  • Xu, Y., Jiang, J.Q. (2008). Technologies for boron removal. Ind. Eng. Chem. Res., 47, 16-2410.
  • Yetgin, A.G., Dündar, O.A., Çakmakçı, E. (2023). Removal of boron from aqueous solution by modified cellulose. Biomass Convers. Biorefin., 13, 13081–13090.
  • Wolska, J., Bryjak, M. (2013). Methods for boron removal from aqueous solutions — A review, Desalination., 310, 18-24.
  • Kim, H., Kim, S., Kim, C. (2024). Enhanced boron removal without pre-pH adjustment via redox-mediated electrodialysis assisted by ion-exchange resins. J. Environ. Chem. Eng., 12(4), 113159.
  • Hilal, N., Kim, G.J., Somerfield, C. (2011). Boron removal from saline water: A comprehensive review. Desalination., 273, 23–35.
  • Guan, Z., Lv, J., Bai, P., Guo, X. (2016). Boron removal from aqueous solutions by adsorption — A review. Desalination., 383, 29–37.
  • Ee, L.Y., Chia, S.Y.R., Xue, K., Chin, S.Y., Cho, C.A.H., Tan, X.Y., Li, S.F.Y. (2023). Hyperbranched nanocellulose enabling rapid boron removal from aqueous environment. Chem. Eng. J., 454, 140218.
  • Akdağ, S., Keyikoglu, R., Karagunduz, A., Keskinler, B., Khataee, A., Yoon, Y. (2023). Recent advances in boron species removal and recovery using layered double hydroxides. Appl. Clay Sci., 233, 106814.
  • Çelebi, H., Şimşek, İ., Bahadır, T., Tulun, Ş., (2023). Use of banana peel for the removal of boron from aqueous solutions in the batch adsorption system. Int. J. Environ. Sci. Technol., 20, 161-176.
  • Lin, J.Y., Mahasti, N.N., Huang, Y.H. (2021). Recent advances in adsorption and coagulation for boron removal from wastewater: A comprehensive review. J. Hazard. Mater. 407, 124401.
  • Xia, N.N., Zhang, H.Y., Hu, Z.H., Kong, F., He, F. (2021). A functionalized bio-based material with abundant mesopores and catechol groups for efficient removal of boron. Chemosphere., 263, 128202.
  • Qiu, X., Sasaki, K., Hirajima, T., Ideta, K., Miyawaki, J. (2014). One-step synthesis of layered double hydroxide-intercalated gluconate for removal of borate. Sep Purif Technol., 123, 114-123.
  • Mutlu-Salmanli, O., Koyuncu, I. (2022). Boron removal and recovery from water and wastewater. Rev. Environ. Sci. Biotechnol., 21, 635–664.
  • Lin, J.Y., Mahasti, N.N.N., Huan, Y.H. (2021). Fluidized-bed crystallization of barium perborate for continuous boron removal from concentrated solution: Supersaturation as a master variable. Sep Purif Technol., 278, 119588.
  • Biçak, N., Bulutçu, N., Şenkal, B.F., Gazi, M. (2001). Modification of crosslinked glycidyl methacrylate-based polymers for boron-specific column extraction. React. Funct. Polym., 47, 175-184.
  • Wang, S., Bing, S., Zhang, H., Zhou, Y., Zhang, L., Gao, C. (2022). Surface engineering design of polyamide membranes for enhanced boron removal in seawater desalination. J. Membr. Sci., 651, 120425.
  • Ghiasi, S., Mohammadi, T., Tofighy, M.A. (2022). Hybrid nanofiltration thin film hollow fiber membranes with adsorptive supports containing bentonite and LDH nanoclays for boron removal. J. Membr. Sci. 655, 120576.
  • Tang, Y.P., Luo, L., Thong, Z., Chung, T.S. (2017). Recent advances in membrane materials and technologies for boron removal. J. Memb. Sci. 541, 434-446.
  • Guesmi, F., Louati, I., Hannachi, C., Hamrouni, B. (2020). Optimization of boron removal from water by electrodialysis using response surface methodology. Water Sci. Technol. 81, 293-300.
  • Khajeh, M. (2011). Optimization of process variables for essential oil components from Satureja hortensis by supercritical fluid extraction using Box-Behnken experimental design, J. Supercrit. Fluids, 55(3), 944-948.
  • Duranoğlu, D., Yılmaz, Y. (2024). Optimization of titanium dioxide production process for photocatalytic degradation of 2,4 dichlorophenoxyacetic acid. J. Fac. Eng. Archit. Gazi Univ., 39(1), 233-242.
  • Alrefaee, S.H., Aljohani, M., Alkhamis, K., Shaaban, F., El-Desouky, M.G., El-Bindary, A.A., El-Bindary, M.A. (2023). Adsorption and effective removal of organophosphorus pesticides from aqueous solution via novel metal-organic framework: Adsorption isotherms, kinetics, and optimization via Box-Behnken design. J. Mol. Liq., 384, 122206
  • Al-dhawi, B.N.S., Kutty, S.R.M., Hayder, G., Elnaim, B.M.E., Mnzool, M., Noor, A., Saeed, A.A.H., Al-Mahbashi, N.M.Y., Al-Nini, A., Jagaba, A.H. (2023). Adsorptive Removal of Boron by DIAION™ CRB05: Characterization, Kinetics, Isotherm, and Optimization by Response Surface Methodology. Processes., 11(2), 453.
  • Kluczka, J., Pudło, W., Krukiewicz, K. (2019). Boron adsorption removal by commercial and modified activated carbons, Chem. Eng. Res. Des., 147, 30–42.
  • Halim, A.A., Roslan, N.A., Yaacub, N.S., Latif, M.T. (2013). Boron removal from aqueous solution using curcumin-impregnated activated carbon, Sains Malaysiana, 42(9), 1293–1300.
  • Irawan, C., Kuo, Y.L., Liu, J.C. (2011). Treatment of boron-containing optoelectronic wastewater by precipitation process, Desalination, 280, 146-151.
  • Polat, S. (2024). Sürekli akış koşullarında sulu çözeltilerden bor giderimi için elektrokimyasal ayırma prosesi tasarlanması ve işletilmesi, Journal of Boron, 9(4), 135-142.
  • Gurten-Inal, I.I., Aktas, Z. (2020). Enhancing the performance of activated carbon based scalable supercapacitors by heat treatment, Appl. Surf. Sci., 514, 145895.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevresel Olarak Sürdürülebilir Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Sevgi Polat 0000-0002-0934-2125

Proje Numarası 123M952
Erken Görünüm Tarihi 9 Ocak 2025
Yayımlanma Tarihi
Gönderilme Tarihi 10 Ağustos 2024
Kabul Tarihi 4 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: UYIK 2024 Special Issue

Kaynak Göster

APA Polat, S. (2025). Elektrokimyasal Ayırma Yöntemi ile Sulu Çözeltilerden Bor Giderim Prosesinin Optimizasyonu. International Journal of Advances in Engineering and Pure Sciences, 37(UYIK 2024 Special Issue), 88-95. https://doi.org/10.7240/jeps.1531483
AMA Polat S. Elektrokimyasal Ayırma Yöntemi ile Sulu Çözeltilerden Bor Giderim Prosesinin Optimizasyonu. JEPS. Ocak 2025;37(UYIK 2024 Special Issue):88-95. doi:10.7240/jeps.1531483
Chicago Polat, Sevgi. “Elektrokimyasal Ayırma Yöntemi Ile Sulu Çözeltilerden Bor Giderim Prosesinin Optimizasyonu”. International Journal of Advances in Engineering and Pure Sciences 37, sy. UYIK 2024 Special Issue (Ocak 2025): 88-95. https://doi.org/10.7240/jeps.1531483.
EndNote Polat S (01 Ocak 2025) Elektrokimyasal Ayırma Yöntemi ile Sulu Çözeltilerden Bor Giderim Prosesinin Optimizasyonu. International Journal of Advances in Engineering and Pure Sciences 37 UYIK 2024 Special Issue 88–95.
IEEE S. Polat, “Elektrokimyasal Ayırma Yöntemi ile Sulu Çözeltilerden Bor Giderim Prosesinin Optimizasyonu”, JEPS, c. 37, sy. UYIK 2024 Special Issue, ss. 88–95, 2025, doi: 10.7240/jeps.1531483.
ISNAD Polat, Sevgi. “Elektrokimyasal Ayırma Yöntemi Ile Sulu Çözeltilerden Bor Giderim Prosesinin Optimizasyonu”. International Journal of Advances in Engineering and Pure Sciences 37/UYIK 2024 Special Issue (Ocak 2025), 88-95. https://doi.org/10.7240/jeps.1531483.
JAMA Polat S. Elektrokimyasal Ayırma Yöntemi ile Sulu Çözeltilerden Bor Giderim Prosesinin Optimizasyonu. JEPS. 2025;37:88–95.
MLA Polat, Sevgi. “Elektrokimyasal Ayırma Yöntemi Ile Sulu Çözeltilerden Bor Giderim Prosesinin Optimizasyonu”. International Journal of Advances in Engineering and Pure Sciences, c. 37, sy. UYIK 2024 Special Issue, 2025, ss. 88-95, doi:10.7240/jeps.1531483.
Vancouver Polat S. Elektrokimyasal Ayırma Yöntemi ile Sulu Çözeltilerden Bor Giderim Prosesinin Optimizasyonu. JEPS. 2025;37(UYIK 2024 Special Issue):88-95.