Araştırma Makalesi
BibTex RIS Kaynak Göster

TAM KAPALI ORGANİK ÇÖZGENLİ VE SULU KUMAŞ YIKAMA SİSTEMLERİNİN EKONOMİK VE ÇAPRAZ MEDYA ETKİ ANALİZİ

Yıl 2024, Cilt: 12 Sayı: 1, 109 - 117, 25.03.2024
https://doi.org/10.21923/jesd.1381909

Öz

Kumaş yıkama proseslerinde genellikle sulu sistem ve çözgen sistem olmak üzere iki yöntem kullanılmaktadır. Bu çalışmada kumaş yıkama proseslerinde kullanılan sulu ve çözgen sistemler Ekonomik ve Çapraz Medya Etkiler Referans Dokümanında sunulan metodolojiden faydalanılarak analiz edilmiştir. Kumaş yıkama sistemleri çapraz medya metodolojisine göre beş farklı çevresel temada karşılaştırılmıştır. Sulu sistemin çözgen sisteme göre beşeri toksisite potansiyeli (BTP), küresel ısınma potansiyeli (KIP), asidifikasyon potansiyeli (AP) ve fotokimyasal ozon oluşturma potansiyeli (FOOP) değerlerinde sırasıyla 1,24, 1,22, 1,24 ve 1,23 kat daha fazla çevresel etkiye neden olduğu görülmüştür. Akuatik toksisite potansiyeli (ATP) açısından çözgen sistemin %100 daha düşük çevresel etkiye sahip olabileceği hesaplanmıştır. Maliyetleme metodolojisine göre ekonomik açıdan değerlendirilen sulu ve çözgen sistemin toplam yıllık maliyetleri sırasıyla 0,34 ve 0,29 USD/kg ürün olarak bulunmuştur. Maliyetleme metodolojisinden elde edilen sonuçlar çözgen sistemin %17 daha verimli olduğunu göstermiştir. Çözgen sistemin net bugünkü değer hesabında, indirgeme oranının %20 olduğu varsayılmıştır. Buna göre sistemin net bugünkü değeri 10.531 USD, yatırımın iç verim oranı ise %26 olarak bulunmuştur.

Kaynakça

  • Balkan, M., 2022. Tekstil Endüstrisinde Mevcut En İyi Teknikler için Ekonomik ve Çevresel Çapraz Medya Etki Analizi. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 73s, Isparta.
  • Cakir, N., Alp, E., Yetis, U., 2020. Assessing Technologies for Reducing Dust Emissions from Sintermaking Based on Cross-Media Effects and Economic Analysis. Clean Technologies and Environmental Policy, 22:1909-1928. https://doi.org/10.1007/s10098-020-01933-9.
  • Çevre Şehircilik ve İklim Değişikliği Bakanlığı (ÇŞİDB), 2023. Entegre Kirlilik Önleme ve Kontrolü. Erişim Tarihi: 08.07.2023. https://ippc.csb.gov.tr
  • Cikankowitz, A., Laforest, V., 2013. Using BAT Performance as an Evaluation Method of Techniques. Journal of Cleaner Production, 42, 141-158. http://dx.doi.org/10.1016/j.jclepro.2012.10.005
  • Danish Environmental Protection Agency (DEPA), 2022. Photochemical Ozone Formation Erişim Tarihi: 08.07.2023. https://www2.mst.dk/udgiv/publications/2005/87-7614-574-3/html/kap06_eng.htm#6.3.
  • Demirel, Y.E., 2019. Entegre Bir Tekstil İşletmesinde Temiz Üretim Uygulamaları. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 226s, Isparta.
  • Doğan, B., 2008. Assessment of the Best Available Wastewater Management Techniques for a Textile Mill: Cost and Benefit Analysis. Middle East Technical University, Science Institute, Department of Environmental Engineering, M.Sc. Thesis, 202p, Ankara.
  • European Commission (EC)., 2003. Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques for the Textile Industry. EC IPPC Bureau, Seville, Spain.
  • European Commission (EC)., 2006. Integrated Pollution Prevention and Control (IPPC) Reference Document on Economics and Cross-Media Effects. EC IPPC Bureau. Seville, Spain.
  • Evrard, D., Laforest, V., Villot, J., Gaucher, R., 2016. Best Available Technique Assessment Methods: a Literature Review from Sector to Installation Level. Journal of Cleaner Production, 121, 72-83. https://doi.org/10.1016/j.jclepro.2016.01.096
  • Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz and R. Van Dorland, 2007. Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York.
  • Ibáñez-Forés V, Bovea MD, Azapagic A, 2013. Assessing the sustainability of Best Available Techniques (BAT): methodology and application in the ceramic tiles industry. J Clean Prod 51:162–176. https://doi.org/10.1016/j.jclepro.2013.01.020
  • Ibrahim, A.Y., Ghallab, A.O., Gadalla, M.A., Makary, S.S., Ashour, F.H., 2017. Technical and Economical/Financial Feasibility Analyses of Flared Gas Recovery in Egypt from Oil and Gas İndustry from İnternational/National Oil Companies’ Perspectives Clean Technologies and Environmental Policy, 19:1423-1436. https://doi.org/10.1007/s10098-017-1340-2.
  • Jungbluth, N., 2020. Description of Life Cycle Impact Assessment Methods. ESU-services Ltd., Switzerland, 40p. http://esu-services.ch/address/tender/.
  • Kim, T. H., Chae, C. U., 2016. Environmental İmpact Analysis of Acidification and Eutrophication Due to Emissions from the Production of Concrete. Sustainability (Switzerland), 8(6), 1–20. https://doi.org/10.3390/su8060578
  • Lameh, M., Al-Mohannadi, D.M., Linke, P., 2022. Minimum Marginal Abatement Cost Curves (Mini-MAC) for CO2 Emissions Reduction Planning. Clean Technologies and Environmental Policy, 24:143-159. https://doi.org/10.1007/s10098-021-02095-y.
  • McKone, T.E., Hertwich, E.G., 2001. The Human Toxicity Potential and a Strategy for Evaluating Model Performance in Life Cycle İmpact Assessment. The International Journal of Life Cycle Assessment, 6(2):106-109. https://doi.org/10.1007/BF02977846.
  • Morelli, B., Hawkins, T. R., Niblick, B., Henderson, A. D., Golden, H. E., Compton, J. E., Cooter, E. J., Bare, J. C., 2018. Critical Review of Eutrophication Models for Life Cycle Assessment. Environmental Science and Technology, 52(17), 9562–9578. https://doi.org/10.1021/acs.est.8b00967
  • Organization for Economic Co-operation and Development (OECD), 2023. Inflation (CPI) (indicator). Erişim Tarihi: 08.07.2023. https://data.oecd.org
  • Ozturk E, Koseoglu H, Karaboyacı M, Yigit NO, Yetis U, Kitis M., 2016. Minimization of water and chemical use in a cotton/polyester fabric dyeing textile mill. J Clean Prod 130:92–102. https:// doi.org/10.1016/j.jclepro.2016.01.080
  • Türkiye İstatistik Kurumu (TÜİK)., 2023. Tüketici Fiyat İndeksi. Erişim Tarihi: 20.07.2023. https://data.tuik.gov.tr/.

ECONOMIC AND CROSS-MEDIA IMPACT ANALYSIS OF FULLY CLOSED ORGANIC SOLVENT AND AQUEOUS FABRIC WASHING SYSTEMS

Yıl 2024, Cilt: 12 Sayı: 1, 109 - 117, 25.03.2024
https://doi.org/10.21923/jesd.1381909

Öz

Two methods are generally used in fabric washing processes, namely the aqueous system and the solvent system. In this study, the aqueous and solvent systems used in fabric washing were analyzed using the methodology presented in the Economic and Cross-Media Effects Reference Document. Alternative fabric washing systems were compared in five different environmental themes according to the cross-media methodology and it was found that the aqueous system caused 1.24, 1.22, 1.24, and 1.23 times more environmental impact than the solvent system in terms of human toxicity (HTP), global warming (GWP), acidification (AP), and photochemical ozone creation potentials (POCP) values, respectively. In addition, it was calculated that the solvent system could have almost 100% lower environmental impact in terms of aquatic toxicity potential (ATP) value. The total annual costs of the aqueous and the solvent systems, which were evaluated economically according to the costing methodology, were found to be 0.34 and 0.29 USD/kg product, respectively. The results from the costing methodology showed that the solvent system was 17% more efficient. In the net present value calculation of the solvent system, the reduction ratio was assumed to be 20%. Accordingly, the total net present value of the system was found to be 10,531 USD and the internal rate of return on the investment was found as 26%.

Kaynakça

  • Balkan, M., 2022. Tekstil Endüstrisinde Mevcut En İyi Teknikler için Ekonomik ve Çevresel Çapraz Medya Etki Analizi. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 73s, Isparta.
  • Cakir, N., Alp, E., Yetis, U., 2020. Assessing Technologies for Reducing Dust Emissions from Sintermaking Based on Cross-Media Effects and Economic Analysis. Clean Technologies and Environmental Policy, 22:1909-1928. https://doi.org/10.1007/s10098-020-01933-9.
  • Çevre Şehircilik ve İklim Değişikliği Bakanlığı (ÇŞİDB), 2023. Entegre Kirlilik Önleme ve Kontrolü. Erişim Tarihi: 08.07.2023. https://ippc.csb.gov.tr
  • Cikankowitz, A., Laforest, V., 2013. Using BAT Performance as an Evaluation Method of Techniques. Journal of Cleaner Production, 42, 141-158. http://dx.doi.org/10.1016/j.jclepro.2012.10.005
  • Danish Environmental Protection Agency (DEPA), 2022. Photochemical Ozone Formation Erişim Tarihi: 08.07.2023. https://www2.mst.dk/udgiv/publications/2005/87-7614-574-3/html/kap06_eng.htm#6.3.
  • Demirel, Y.E., 2019. Entegre Bir Tekstil İşletmesinde Temiz Üretim Uygulamaları. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 226s, Isparta.
  • Doğan, B., 2008. Assessment of the Best Available Wastewater Management Techniques for a Textile Mill: Cost and Benefit Analysis. Middle East Technical University, Science Institute, Department of Environmental Engineering, M.Sc. Thesis, 202p, Ankara.
  • European Commission (EC)., 2003. Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques for the Textile Industry. EC IPPC Bureau, Seville, Spain.
  • European Commission (EC)., 2006. Integrated Pollution Prevention and Control (IPPC) Reference Document on Economics and Cross-Media Effects. EC IPPC Bureau. Seville, Spain.
  • Evrard, D., Laforest, V., Villot, J., Gaucher, R., 2016. Best Available Technique Assessment Methods: a Literature Review from Sector to Installation Level. Journal of Cleaner Production, 121, 72-83. https://doi.org/10.1016/j.jclepro.2016.01.096
  • Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz and R. Van Dorland, 2007. Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York.
  • Ibáñez-Forés V, Bovea MD, Azapagic A, 2013. Assessing the sustainability of Best Available Techniques (BAT): methodology and application in the ceramic tiles industry. J Clean Prod 51:162–176. https://doi.org/10.1016/j.jclepro.2013.01.020
  • Ibrahim, A.Y., Ghallab, A.O., Gadalla, M.A., Makary, S.S., Ashour, F.H., 2017. Technical and Economical/Financial Feasibility Analyses of Flared Gas Recovery in Egypt from Oil and Gas İndustry from İnternational/National Oil Companies’ Perspectives Clean Technologies and Environmental Policy, 19:1423-1436. https://doi.org/10.1007/s10098-017-1340-2.
  • Jungbluth, N., 2020. Description of Life Cycle Impact Assessment Methods. ESU-services Ltd., Switzerland, 40p. http://esu-services.ch/address/tender/.
  • Kim, T. H., Chae, C. U., 2016. Environmental İmpact Analysis of Acidification and Eutrophication Due to Emissions from the Production of Concrete. Sustainability (Switzerland), 8(6), 1–20. https://doi.org/10.3390/su8060578
  • Lameh, M., Al-Mohannadi, D.M., Linke, P., 2022. Minimum Marginal Abatement Cost Curves (Mini-MAC) for CO2 Emissions Reduction Planning. Clean Technologies and Environmental Policy, 24:143-159. https://doi.org/10.1007/s10098-021-02095-y.
  • McKone, T.E., Hertwich, E.G., 2001. The Human Toxicity Potential and a Strategy for Evaluating Model Performance in Life Cycle İmpact Assessment. The International Journal of Life Cycle Assessment, 6(2):106-109. https://doi.org/10.1007/BF02977846.
  • Morelli, B., Hawkins, T. R., Niblick, B., Henderson, A. D., Golden, H. E., Compton, J. E., Cooter, E. J., Bare, J. C., 2018. Critical Review of Eutrophication Models for Life Cycle Assessment. Environmental Science and Technology, 52(17), 9562–9578. https://doi.org/10.1021/acs.est.8b00967
  • Organization for Economic Co-operation and Development (OECD), 2023. Inflation (CPI) (indicator). Erişim Tarihi: 08.07.2023. https://data.oecd.org
  • Ozturk E, Koseoglu H, Karaboyacı M, Yigit NO, Yetis U, Kitis M., 2016. Minimization of water and chemical use in a cotton/polyester fabric dyeing textile mill. J Clean Prod 130:92–102. https:// doi.org/10.1016/j.jclepro.2016.01.080
  • Türkiye İstatistik Kurumu (TÜİK)., 2023. Tüketici Fiyat İndeksi. Erişim Tarihi: 20.07.2023. https://data.tuik.gov.tr/.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği (Diğer)
Bölüm Araştırma Makalesi \ Research Makaleler
Yazarlar

Meltem Balkan 0000-0001-7790-775X

Emrah Öztürk 0000-0001-6421-6474

Mehmet Kitiş 0000-0002-6836-3129

Yayımlanma Tarihi 25 Mart 2024
Gönderilme Tarihi 26 Ekim 2023
Kabul Tarihi 5 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 1

Kaynak Göster

APA Balkan, M., Öztürk, E., & Kitiş, M. (2024). TAM KAPALI ORGANİK ÇÖZGENLİ VE SULU KUMAŞ YIKAMA SİSTEMLERİNİN EKONOMİK VE ÇAPRAZ MEDYA ETKİ ANALİZİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 12(1), 109-117. https://doi.org/10.21923/jesd.1381909