Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 2 Sayı: 1, 1 - 8, 30.06.2018

Öz

Kaynakça

  • [1] Ismail, S.O., Dhakal, H.N., Popov, I., & Beaugrand, J. (2016). Comprehensive study on machinability of sustainable and conventional fibre reinforced polymer composites. Engineering Science and Technology, an International Journal, 19 (4), 2043-2052.
  • [2] Lee, J.-Y., An, J., & Chua, C.K. (2017). Fundamentals and applications of 3D printing for novel materials. Applied Materials Today, 7, 120-133.
  • [3] Mansour, S., & Hague, R. (2003). Impact of rapid manufacturing on design for manufacture for injection moulding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217 (4), 453-461.
  • [4] Wang, X., Jiang, M., Zhou, Z., Gou, J., & Hui, D. (2017). 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering, 110, 442-458.
  • [5] Christ, S., Schnabel, M., Vorndran, E., Groll, J., & Gbureck, U. (2015). Fiber reinforcement during 3D printing. Materials Letters, 139, 165-168.
  • [6] Brenken, B., Barocio, E., Favaloro, A., Kunc, V., & Pipes, R.B. (2018). Fused Filament Fabrication of Fiber-Reinforced Polymers: A Review. Additive Manufacturing,
  • [7] Parandoush, P., & Lin, D. (2017). A review on additive manufacturing of polymer-fiber composites. Composite Structures, 182, 36-53.
  • [8] Hao, W., Liu, Y., Zhou, H., Chen, H., & Fang, D. (2018). Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites. Polymer Testing, 65, 29-34.
  • [9] Goh, G.D., Dikshit, V., Nagalingam, A.P., Goh, G.L., Agarwala, S., Sing, S.L., Wei, J., & Yeong, W.Y. (2018). Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics. Materials & Design, 137, 79-89.
  • [10] Türk, D.-A., Brenni, F., Zogg, M., & Meboldt, M. (2017). Mechanical characterization of 3D printed polymers for fiber reinforced polymers processing. Materials & Design, 118, 256-265.
  • [11] Melenka, G.W., Cheung, B.K.O., Schofield, J.S., Dawson, M.R., & Carey, J.P. (2016). Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures. Composite Structures, 153, 866-875.
  • [12] Dickson, A.N., Barry, J.N., McDonnell, K.A., & Dowling, D.P. (2017). Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Additive Manufacturing, 16, 146-152.
  • [13] Karsli, N.G., & Aytac, A. (2013). Tensile and thermomechanical properties of short carbon fiber reinforced polyamide 6 composites. Composites Part B: Engineering, 51, 270-275.
  • [14] Tekinalp, H.L., Kunc, V., Velez-Garcia, G.M., Duty, C.E., Love, L.J., Naskar, A.K., Blue, C.A., & Ozcan, S. (2014). Highly oriented carbon fiber–polymer composites via additive manufacturing. Composites Science and Technology, 105, 144-150.
  • [15] Belhouideg, S. (2018). Prediction of effective mechanical properties of composite materials using homogenization approach: Application to tungsten fiber reinforced bulk metallic glass matrix composite. European Mechanical Science, 2 (2), 68-75
  • [16] Dimitrov, D., Schreve, K., & De Beer, N. (2006). Advances in three dimensional printing–state of the art and future perspectives. Rapid Prototyping Journal, 12 (3), 136-147.
  • [17] Zaoui, A., Structural morphology and constitutive behaviour of microheterogeneous materials, in Continuum micromechanics, Springer. p. 291-347, 1997.
  • [18] Dormieux, L., Kondo, D., & Ulm, F.-J. 2006. "Microporomechanics". John Wiley & Sons.
  • [19] Eshelby, J.D. 1957. "The determination of the elastic field of an ellipsoidal inclusion, and related problems." In Proc. R. Soc. Lond. A: The Royal Society, 376-396.
  • [20] Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21 (5), 571-574.
  • [21] Matsuzaki, R., Ueda, M., Namiki, M., Jeong, T.-K., Asahara, H., Horiguchi, K., Nakamura, T., Todoroki, A., & Hirano, Y. (2016). Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Scientific Reports, 6, 23058.
  • [22] Van Der Klift, F., Koga, Y., Todoroki, A., Ueda, M., Hirano, Y., & Matsuzaki, R. (2015). 3D printing of continuous carbon fibre reinforced thermo-plastic (CFRTP) tensile test specimens. Open Journal of Composite Materials, 6 (01), 18.
  • [23] Tian, X., Liu, T., Wang, Q., Dilmurat, A., Li, D., & Ziegmann, G. (2017). Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites. Journal of Cleaner Production, 142, 1609-1618.

A micromechanical approach for predicting effective mechanical properties of Fiber-reinforced polymer (FRP) composites fabricated with 3D printers

Yıl 2018, Cilt: 2 Sayı: 1, 1 - 8, 30.06.2018

Öz

Additive  Manufacturing  or  Three  dimensional  (3D)  printing  is  a  new  technology  widely  used  to  produce  three-dimensional  parts.  3D  polymer-based printers have become easily accessible to the public. Recently, a new  kind  of  3D  printer  has  been  developed  to  manufacture  printed  polymer  composites   reinforced   with   continuous   or   short   fibers.   Usually,   the  technology  used  by  these  3D  printers  is  Fused  Deposition  Modelling  (FDM).  The  aim  of  this  study  is  to  predict  the  mechanical  properties  of  printed  materials  in  Fiber-reinforced  polymer  (FRP)  composites  using  a  micromechanical  approach.  Indeed,  the  main  idea  of  this  approach  is  to  characterize  the  effective  mechanical  properties  from  a  microstructural  description of the heterogeneous materials and the knowledge of the local  behavior of constituents using the homogenization process. The predictions  of  the  effective  mechanical  properties  were  confronted  with  experimental  data obtained from the literature. The difference between the predicted and  experimental   values   does   not   exceed   28.6%.   The   micromechanical  approach is a good tool for designers to estimate the mechanical properties  of  fiber-reinforced  3D  printed  polymer  composites  which  require  specific  mechanical properties.

Kaynakça

  • [1] Ismail, S.O., Dhakal, H.N., Popov, I., & Beaugrand, J. (2016). Comprehensive study on machinability of sustainable and conventional fibre reinforced polymer composites. Engineering Science and Technology, an International Journal, 19 (4), 2043-2052.
  • [2] Lee, J.-Y., An, J., & Chua, C.K. (2017). Fundamentals and applications of 3D printing for novel materials. Applied Materials Today, 7, 120-133.
  • [3] Mansour, S., & Hague, R. (2003). Impact of rapid manufacturing on design for manufacture for injection moulding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217 (4), 453-461.
  • [4] Wang, X., Jiang, M., Zhou, Z., Gou, J., & Hui, D. (2017). 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering, 110, 442-458.
  • [5] Christ, S., Schnabel, M., Vorndran, E., Groll, J., & Gbureck, U. (2015). Fiber reinforcement during 3D printing. Materials Letters, 139, 165-168.
  • [6] Brenken, B., Barocio, E., Favaloro, A., Kunc, V., & Pipes, R.B. (2018). Fused Filament Fabrication of Fiber-Reinforced Polymers: A Review. Additive Manufacturing,
  • [7] Parandoush, P., & Lin, D. (2017). A review on additive manufacturing of polymer-fiber composites. Composite Structures, 182, 36-53.
  • [8] Hao, W., Liu, Y., Zhou, H., Chen, H., & Fang, D. (2018). Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites. Polymer Testing, 65, 29-34.
  • [9] Goh, G.D., Dikshit, V., Nagalingam, A.P., Goh, G.L., Agarwala, S., Sing, S.L., Wei, J., & Yeong, W.Y. (2018). Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics. Materials & Design, 137, 79-89.
  • [10] Türk, D.-A., Brenni, F., Zogg, M., & Meboldt, M. (2017). Mechanical characterization of 3D printed polymers for fiber reinforced polymers processing. Materials & Design, 118, 256-265.
  • [11] Melenka, G.W., Cheung, B.K.O., Schofield, J.S., Dawson, M.R., & Carey, J.P. (2016). Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures. Composite Structures, 153, 866-875.
  • [12] Dickson, A.N., Barry, J.N., McDonnell, K.A., & Dowling, D.P. (2017). Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Additive Manufacturing, 16, 146-152.
  • [13] Karsli, N.G., & Aytac, A. (2013). Tensile and thermomechanical properties of short carbon fiber reinforced polyamide 6 composites. Composites Part B: Engineering, 51, 270-275.
  • [14] Tekinalp, H.L., Kunc, V., Velez-Garcia, G.M., Duty, C.E., Love, L.J., Naskar, A.K., Blue, C.A., & Ozcan, S. (2014). Highly oriented carbon fiber–polymer composites via additive manufacturing. Composites Science and Technology, 105, 144-150.
  • [15] Belhouideg, S. (2018). Prediction of effective mechanical properties of composite materials using homogenization approach: Application to tungsten fiber reinforced bulk metallic glass matrix composite. European Mechanical Science, 2 (2), 68-75
  • [16] Dimitrov, D., Schreve, K., & De Beer, N. (2006). Advances in three dimensional printing–state of the art and future perspectives. Rapid Prototyping Journal, 12 (3), 136-147.
  • [17] Zaoui, A., Structural morphology and constitutive behaviour of microheterogeneous materials, in Continuum micromechanics, Springer. p. 291-347, 1997.
  • [18] Dormieux, L., Kondo, D., & Ulm, F.-J. 2006. "Microporomechanics". John Wiley & Sons.
  • [19] Eshelby, J.D. 1957. "The determination of the elastic field of an ellipsoidal inclusion, and related problems." In Proc. R. Soc. Lond. A: The Royal Society, 376-396.
  • [20] Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21 (5), 571-574.
  • [21] Matsuzaki, R., Ueda, M., Namiki, M., Jeong, T.-K., Asahara, H., Horiguchi, K., Nakamura, T., Todoroki, A., & Hirano, Y. (2016). Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Scientific Reports, 6, 23058.
  • [22] Van Der Klift, F., Koga, Y., Todoroki, A., Ueda, M., Hirano, Y., & Matsuzaki, R. (2015). 3D printing of continuous carbon fibre reinforced thermo-plastic (CFRTP) tensile test specimens. Open Journal of Composite Materials, 6 (01), 18.
  • [23] Tian, X., Liu, T., Wang, Q., Dilmurat, A., Li, D., & Ziegmann, G. (2017). Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites. Journal of Cleaner Production, 142, 1609-1618.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

SOUFIANE Belhouıdeg

Morade Ouhstı Bu kişi benim

Benachir El Haddadı Bu kişi benim

Yayımlanma Tarihi 30 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 2 Sayı: 1

Kaynak Göster

APA Belhouıdeg, S., Ouhstı, M., & El Haddadı, B. (2018). A micromechanical approach for predicting effective mechanical properties of Fiber-reinforced polymer (FRP) composites fabricated with 3D printers. Journal of Engineering and Technology, 2(1), 1-8.