Araştırma Makalesi
BibTex RIS Kaynak Göster

FORMULATION AND EVALUATION OF PARENTERAL IN-SITU FORMING BIODEGRADABLE IMPLANT FOR CONTROLLED RELEASE OF LEVOTHYROXINE SODIUM

Yıl 2023, , 141 - 156, 20.01.2023
https://doi.org/10.33483/jfpau.1121612

Öz

Objective: The objective of present research work is formulation and evaluation of parenteral in-situ forming biodegradable implant for controlled release of levothyroxine sodium.
Material and Method: The present study used N-Methyl pyrrolidone (NMP) and triacetin as solvents and PLGA as a biodegradable polymer to manufacture two biodegradable polymeric drug delivery systems, in-situ forming implant (ISFI) and in-situ micro particles (ISM). Other evaluation tests, such as sterility, percent drug entrapment capacity, and so on, were also carried out. ISFI and ISM were tested for up to one month at three different temperatures (4ºC, 25ºC, and 40ºC).
Result and Discussions: The drug release from both systems was compared. In batch F4, burst release was 10.72%, while in batch EP8, it was 8.16%. F4 was released 94.54% in roughly 30 days and EP8 was released 95.72%. The polymer content, type of solvent (hydrophilic or hydrophobic), and implant morphology all contributed to increased burst release in the ISFI formulation. Burst release was decreased using a combination of hydrophilic and hydrophobic solvents (NMP and Triacetin). When compared to other formulations, ISM had the lowest burst release. Both the ISFI and ISM formulations might deliver medications for up to 30 days. Both formulation show good drug entrapment efficiency F4 (87.74%) and EP8 (90.37%) respectively. Both formulations passed all their physicochemical proprieties included visual examination, pH, and injectability respectively. No visible growth of microorganisms was seen in growth media treated with both formulations after 30 days. The injection site (on the skin) and adjacent muscles showed no symptoms of irritation. It was confirmed when the results were compared to those of the control group. There was no hyperemia, discoloration, or necrosis at the site and no sign of irritation by both formulations. In the case of ISM (EP8), drug release follows zero order kinetics with an R2 value of 0.9814 and ISFI (F4) follows Korsmeyer peppas and both transport drug through Fickian diffusion mechanism. Both formulations were found to, be stable. Hence, Long-acting Levothyroxine sodium formulations (ISFI & ISM) may be a superior option for hypothyroidism treatment.

Kaynakça

  • 1. Gaitonde, D.Y., Rowley, K.D., Sweeney, L.B. (2012). Hypothyroidism: an update. South African Family Practice, 54(5), 384-390. [CrossRef]
  • 2. Colucci, P., Yue, C.S., Ducharme, M., Benvenga, S. (2013). A review of the pharmacokinetics of levothyroxine for the treatment of hypothyroidism. European Endocrinology, 9(1), 40-47. [CrossRef]
  • 3. Hays, M.T. (2007). Parenteral thyroxine administration. Thyroid, 17(2), 127-129. [CrossRef]
  • 4. Abdelghany, S., Tekko, I.A., Vora, L., Larrañeta, E., Permana, A.D., Donnelly, R.F. (2019). Nanosuspension-based dissolving microneedle arrays for intradermal delivery of curcumin. Pharmaceutics, 11(7), 308. [CrossRef]
  • 5. Sudhakar, M., Kancharla, R., Rao, V.U. (2013). A review on sustained release injectable depot drug delivery systems. International Journal of Advanced Pharmaceutical Sciences, 4, 142-58.
  • 6. Sheikh, A.A., Sheikh, S.R. (2016). Advanced injectable drug delivery system: A brief review. System, 9(1), 11.
  • 7. Chaker L, Bianco A, Peeters R. (2017). Hypothyroidism. Lancet, 390(1), 1550-1562. [CrossRef]
  • 8. Kamaly, N., Yameen, B., Wu, J., Farokhzad, O.C. (2016). Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews, 116(4), 2602-2663. [CrossRef]
  • 9. Liechty, W.B., Kryscio, D.R., Slaughter, B.V., Peppas, N.A. (2010). Polymers for drug delivery systems. Annual Review of Chemical and Biomolecular Engineering, 1(1), 149-173. [CrossRef]
  • 10. Joshi, J.R., Patel, R.P. (2012). Role of Biodegradable Polymers in Drug Delivery. International Journal of Current Pharmaceutical Research, 4(2), 74-81.
  • 11. Song, R., Murphy, M., Li, C., Ting, K., Soo, C., Zheng, Z. (2018). Current development of biodegradable polymeric materials for biomedical applications. Drug Design, Development and Therapy, 12(1), 3117-3145. [CrossRef]
  • 12. Singh, G., Kaur, T., Kaur, R., Kaur, A. (2014). Recent biomedical applications and patents on biodegradable polymer-PLGA. International Journal of Pharmacology and Pharmaceutical Science, 1(2), 30-42.
  • 13. Han, F.Y., Thurecht, K.J., Whittaker, A.K., Smith, M.T. (2016). Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Frontiers in Pharmacology, 7(1), 185. [CrossRef]
  • 14. Madan, M., Bajaj, A., Lewis, S., Udupa, N., Baig, J.A. (2009). In situ forming polymeric drug delivery systems. Indian Journal of Pharmaceutical Sciences, 71(3), 242-251. [CrossRef]
  • 15. Patel, B., Chakraborty, S. (2016). Biodegradable polymers: emerging excipients for the pharmaceutical and medical device industries. Journal of Excipients and Food Chemicals, 4(4), 1010.
  • 16. Kapoor, D.N., Bhatia, A., Kaur, R., Sharma, R., Kaur, G., Dhawan, S. (2015). PLGA: A unique polymer for drug delivery. Therapeutic Delivery, 6(1), 41-58. [CrossRef]
  • 17. Makadia, H.K., Siegel, S.J. (2011). Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 3(3), 1377-1397. [CrossRef]
  • 18. Avachat, A.M., Kapure, S.S. (2014). Asenapine maleate in situ forming biodegradable implant: An approach to enhance bioavailability. International Journal of Pharmaceutics, 477(1-2), 64-72. [CrossRef]
  • 19. Ahmed, T.A., Ibrahim, H.M., Samy, A.M., Kaseem, A., Nutan, M.T., Hussain, M.D. (2014). Biodegradable injectable in situ implants and microparticles for sustained release of montelukast: In vitro release, pharmacokinetics, and stability. AAPS PharmSciTech, 15(3), 772–780. [CrossRef]
  • 20. Algin-Yapar, E., Ari, N., Baykara, T. (2014). Evaluation of in vitro and in vivo performance of granisetron in situ forming implants: effect of sterilization, storage condition and degradation. Tropical Journal of Pharmaceutical Research, 13(3), 319-325. [CrossRef]
  • 21. Bindu, R., Srinivas, P., Ravindrababu, D. (2015). Formulation and characterization of parenteral in situ implants of tariquidar bimesylate. International Journal of Pharmaceutical Sciences and Research, 6(1), 2028-2034.
  • 22. Patel, R.B., Carlson, A.N., Solorio, L., Exner, A.A. (2010). Characterization of formulation parameters affecting low molecular weight drug release from in situ forming drug delivery systems. Journal of Biomedical Materials Research Part A, 94(2), 476-484. [CrossRef]
  • 23. Yehia, S.A., Abdel-Halim, S.A., Aziz, M.Y. (2017). Formulation and evaluation of injectable in situ forming microparticles for sustained delivery of lornoxicam. Drug Development and Industrial Pharmacy, 43(2), 319-328. [CrossRef]
  • 24. Costa, P., Lobo, J.M.S. (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 13(2), 123-133. [CrossRef]
  • 25. Shaikh, H., Kshirsagar, R. (2015). Mathematical models for drug release characterization: A review. World Journal of Pharmaceutical Research, 4(4), 324-338.
  • 26. Shintani, S., Yamazaki, M., Nakamura, M., Nakayama, I. (1967). A new method to determine the irritation of drugs after intramuscular injection in rabbits. Toxicology and Applied Pharmacology, 11(2), 293-301. [CrossRef]
  • 27. Bajaj, S., Singla, D., Sakhuja, N. (2012). Stability testing of pharmaceutical products. Journal of Applied Pharmaceutical Science, 2(3), 129-138. [CrossRef]

LEVOTİROKSİN SODYUMUN KONTROLLÜ SALIMI İÇİN IN-SITU PARENTERAL BİYOBOZUNUR İMPLANT FORMÜLASYONU VE DEĞERLENDİRİLMESİ

Yıl 2023, , 141 - 156, 20.01.2023
https://doi.org/10.33483/jfpau.1121612

Öz

Amaç: Mevcut araştırmanın amacı, kontrollü levotiroksin sodyum salımı için parenteral in-situ oluşan biyobozunur implantın formülasyonu ve değerlendirilmesidir.
Gereç ve Yöntem: Bu çalışmada, in-situ implant (ISFI) ve in-situ mikro parçacıkları (ISM) şeklindeki iki biyobozunur polimerik ilaç taşıyıcı sistemi hazırlamak için çözücü olarak N-Metil pirolidon (NMP) ile triasetin ve biyobozunur polimer olarak da PLGA kullanılmıştır. Sterilite, etken madde yükleme kapasitesi yüzdesi ve benzeri diğer değerlendirme testleri de gerçekleştirilmiştir. ISFI ve ISM, bir aya kadar üç farklı sıcaklık (4ºC, 25ºC ve 40ºC) değerinde test edilmiştir.
Sonuç ve Tartışma: Her iki sistemden etken madde salımı karşılaştırıldı. F4 kodlu formülasyonda başlangıç doz boşalması %10.72 iken, EP8 kodlu da %8.16’di. Etken madde F4 koldu formülasyondan yaklaşık 30 günde %94.54 ve EP8 kodlu formülasyondan %95.72 düzeyinde açığa çıkmıştır. Polimer içeriği, çözücü tipi (hidrofilik veya hidrofobik) ve implant morfolojisi olmak üzere hepsi, ISFI formülasyonundan başlangıç doz boşalmasının artmasına katkıda bulunmuştur. Başlangıç doz boşalması, hidrofilik ve hidrofobik çözücülerin (NMP ve Triasetin) kombinasyonu kullanıldığında azaltılmıştır. Diğer formülasyonlarla karşılaştırıldığında, ISM en başlangıç doz boşalmasına sahiptir. Hem ISFI hem de ISM formülasyonları, etken maddeleri 30 güne kadar verebilmektedir. Her iki formülasyon da sırasıyla iyi etken madde yükleme etkinliği F4 (%87.74) ve EP8 (%90.37) göstermektedir. Her iki formülasyon da sırasıyla görsel inceleme, pH ve enjekte edilebilirlik dahil tüm fizikokimyasal özelliklerinden geçmiştir. 30 gün sonra her iki formülasyonla işleme tabi tutulan büyüme ortamındaki mikroorganizmaların gözle görülür bir büyümesi görülmedi. Enjeksiyon bölgesi (cilt üzerinde) ve bitişik kaslar hiçbir irritasyon belirtisi göstermedi. Sonuçlar kontrol grubu ile karşılaştırıldığında doğrulanmıştır. Her iki formülasyonda da irritasyon belirtisi ve enjeksiyon bölgesinde hiperemi, renk değişikliği veya nekroz yoktu. Her iki formülasyonun da stabil olduğu bulunmuştur. Bu nedenle, uzun etkili Levotiroksin sodyum formülasyonları (ISFI ve ISM), hipotiroidizm tedavisi için üstün bir seçenek olabilir.

Kaynakça

  • 1. Gaitonde, D.Y., Rowley, K.D., Sweeney, L.B. (2012). Hypothyroidism: an update. South African Family Practice, 54(5), 384-390. [CrossRef]
  • 2. Colucci, P., Yue, C.S., Ducharme, M., Benvenga, S. (2013). A review of the pharmacokinetics of levothyroxine for the treatment of hypothyroidism. European Endocrinology, 9(1), 40-47. [CrossRef]
  • 3. Hays, M.T. (2007). Parenteral thyroxine administration. Thyroid, 17(2), 127-129. [CrossRef]
  • 4. Abdelghany, S., Tekko, I.A., Vora, L., Larrañeta, E., Permana, A.D., Donnelly, R.F. (2019). Nanosuspension-based dissolving microneedle arrays for intradermal delivery of curcumin. Pharmaceutics, 11(7), 308. [CrossRef]
  • 5. Sudhakar, M., Kancharla, R., Rao, V.U. (2013). A review on sustained release injectable depot drug delivery systems. International Journal of Advanced Pharmaceutical Sciences, 4, 142-58.
  • 6. Sheikh, A.A., Sheikh, S.R. (2016). Advanced injectable drug delivery system: A brief review. System, 9(1), 11.
  • 7. Chaker L, Bianco A, Peeters R. (2017). Hypothyroidism. Lancet, 390(1), 1550-1562. [CrossRef]
  • 8. Kamaly, N., Yameen, B., Wu, J., Farokhzad, O.C. (2016). Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews, 116(4), 2602-2663. [CrossRef]
  • 9. Liechty, W.B., Kryscio, D.R., Slaughter, B.V., Peppas, N.A. (2010). Polymers for drug delivery systems. Annual Review of Chemical and Biomolecular Engineering, 1(1), 149-173. [CrossRef]
  • 10. Joshi, J.R., Patel, R.P. (2012). Role of Biodegradable Polymers in Drug Delivery. International Journal of Current Pharmaceutical Research, 4(2), 74-81.
  • 11. Song, R., Murphy, M., Li, C., Ting, K., Soo, C., Zheng, Z. (2018). Current development of biodegradable polymeric materials for biomedical applications. Drug Design, Development and Therapy, 12(1), 3117-3145. [CrossRef]
  • 12. Singh, G., Kaur, T., Kaur, R., Kaur, A. (2014). Recent biomedical applications and patents on biodegradable polymer-PLGA. International Journal of Pharmacology and Pharmaceutical Science, 1(2), 30-42.
  • 13. Han, F.Y., Thurecht, K.J., Whittaker, A.K., Smith, M.T. (2016). Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Frontiers in Pharmacology, 7(1), 185. [CrossRef]
  • 14. Madan, M., Bajaj, A., Lewis, S., Udupa, N., Baig, J.A. (2009). In situ forming polymeric drug delivery systems. Indian Journal of Pharmaceutical Sciences, 71(3), 242-251. [CrossRef]
  • 15. Patel, B., Chakraborty, S. (2016). Biodegradable polymers: emerging excipients for the pharmaceutical and medical device industries. Journal of Excipients and Food Chemicals, 4(4), 1010.
  • 16. Kapoor, D.N., Bhatia, A., Kaur, R., Sharma, R., Kaur, G., Dhawan, S. (2015). PLGA: A unique polymer for drug delivery. Therapeutic Delivery, 6(1), 41-58. [CrossRef]
  • 17. Makadia, H.K., Siegel, S.J. (2011). Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 3(3), 1377-1397. [CrossRef]
  • 18. Avachat, A.M., Kapure, S.S. (2014). Asenapine maleate in situ forming biodegradable implant: An approach to enhance bioavailability. International Journal of Pharmaceutics, 477(1-2), 64-72. [CrossRef]
  • 19. Ahmed, T.A., Ibrahim, H.M., Samy, A.M., Kaseem, A., Nutan, M.T., Hussain, M.D. (2014). Biodegradable injectable in situ implants and microparticles for sustained release of montelukast: In vitro release, pharmacokinetics, and stability. AAPS PharmSciTech, 15(3), 772–780. [CrossRef]
  • 20. Algin-Yapar, E., Ari, N., Baykara, T. (2014). Evaluation of in vitro and in vivo performance of granisetron in situ forming implants: effect of sterilization, storage condition and degradation. Tropical Journal of Pharmaceutical Research, 13(3), 319-325. [CrossRef]
  • 21. Bindu, R., Srinivas, P., Ravindrababu, D. (2015). Formulation and characterization of parenteral in situ implants of tariquidar bimesylate. International Journal of Pharmaceutical Sciences and Research, 6(1), 2028-2034.
  • 22. Patel, R.B., Carlson, A.N., Solorio, L., Exner, A.A. (2010). Characterization of formulation parameters affecting low molecular weight drug release from in situ forming drug delivery systems. Journal of Biomedical Materials Research Part A, 94(2), 476-484. [CrossRef]
  • 23. Yehia, S.A., Abdel-Halim, S.A., Aziz, M.Y. (2017). Formulation and evaluation of injectable in situ forming microparticles for sustained delivery of lornoxicam. Drug Development and Industrial Pharmacy, 43(2), 319-328. [CrossRef]
  • 24. Costa, P., Lobo, J.M.S. (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 13(2), 123-133. [CrossRef]
  • 25. Shaikh, H., Kshirsagar, R. (2015). Mathematical models for drug release characterization: A review. World Journal of Pharmaceutical Research, 4(4), 324-338.
  • 26. Shintani, S., Yamazaki, M., Nakamura, M., Nakayama, I. (1967). A new method to determine the irritation of drugs after intramuscular injection in rabbits. Toxicology and Applied Pharmacology, 11(2), 293-301. [CrossRef]
  • 27. Bajaj, S., Singla, D., Sakhuja, N. (2012). Stability testing of pharmaceutical products. Journal of Applied Pharmaceutical Science, 2(3), 129-138. [CrossRef]
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Manish Goyani 0000-0003-3666-1452

Meghraj Suryawanshi 0000-0003-3958-2813

Ridhdhesh Jıvawala Bu kişi benim 0000-0002-2334-5410

Yayımlanma Tarihi 20 Ocak 2023
Gönderilme Tarihi 26 Mayıs 2022
Kabul Tarihi 12 Kasım 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Goyani, M., Suryawanshi, M., & Jıvawala, R. (2023). FORMULATION AND EVALUATION OF PARENTERAL IN-SITU FORMING BIODEGRADABLE IMPLANT FOR CONTROLLED RELEASE OF LEVOTHYROXINE SODIUM. Journal of Faculty of Pharmacy of Ankara University, 47(1), 141-156. https://doi.org/10.33483/jfpau.1121612
AMA Goyani M, Suryawanshi M, Jıvawala R. FORMULATION AND EVALUATION OF PARENTERAL IN-SITU FORMING BIODEGRADABLE IMPLANT FOR CONTROLLED RELEASE OF LEVOTHYROXINE SODIUM. Ankara Ecz. Fak. Derg. Ocak 2023;47(1):141-156. doi:10.33483/jfpau.1121612
Chicago Goyani, Manish, Meghraj Suryawanshi, ve Ridhdhesh Jıvawala. “FORMULATION AND EVALUATION OF PARENTERAL IN-SITU FORMING BIODEGRADABLE IMPLANT FOR CONTROLLED RELEASE OF LEVOTHYROXINE SODIUM”. Journal of Faculty of Pharmacy of Ankara University 47, sy. 1 (Ocak 2023): 141-56. https://doi.org/10.33483/jfpau.1121612.
EndNote Goyani M, Suryawanshi M, Jıvawala R (01 Ocak 2023) FORMULATION AND EVALUATION OF PARENTERAL IN-SITU FORMING BIODEGRADABLE IMPLANT FOR CONTROLLED RELEASE OF LEVOTHYROXINE SODIUM. Journal of Faculty of Pharmacy of Ankara University 47 1 141–156.
IEEE M. Goyani, M. Suryawanshi, ve R. Jıvawala, “FORMULATION AND EVALUATION OF PARENTERAL IN-SITU FORMING BIODEGRADABLE IMPLANT FOR CONTROLLED RELEASE OF LEVOTHYROXINE SODIUM”, Ankara Ecz. Fak. Derg., c. 47, sy. 1, ss. 141–156, 2023, doi: 10.33483/jfpau.1121612.
ISNAD Goyani, Manish vd. “FORMULATION AND EVALUATION OF PARENTERAL IN-SITU FORMING BIODEGRADABLE IMPLANT FOR CONTROLLED RELEASE OF LEVOTHYROXINE SODIUM”. Journal of Faculty of Pharmacy of Ankara University 47/1 (Ocak 2023), 141-156. https://doi.org/10.33483/jfpau.1121612.
JAMA Goyani M, Suryawanshi M, Jıvawala R. FORMULATION AND EVALUATION OF PARENTERAL IN-SITU FORMING BIODEGRADABLE IMPLANT FOR CONTROLLED RELEASE OF LEVOTHYROXINE SODIUM. Ankara Ecz. Fak. Derg. 2023;47:141–156.
MLA Goyani, Manish vd. “FORMULATION AND EVALUATION OF PARENTERAL IN-SITU FORMING BIODEGRADABLE IMPLANT FOR CONTROLLED RELEASE OF LEVOTHYROXINE SODIUM”. Journal of Faculty of Pharmacy of Ankara University, c. 47, sy. 1, 2023, ss. 141-56, doi:10.33483/jfpau.1121612.
Vancouver Goyani M, Suryawanshi M, Jıvawala R. FORMULATION AND EVALUATION OF PARENTERAL IN-SITU FORMING BIODEGRADABLE IMPLANT FOR CONTROLLED RELEASE OF LEVOTHYROXINE SODIUM. Ankara Ecz. Fak. Derg. 2023;47(1):141-56.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.