Araştırma Makalesi
BibTex RIS Kaynak Göster

ANTİVİRAL İLAÇLARIN HASTANE ENFEKSİYON ETKENİ PSEUDOMONAS AERUGINOSA ÜZERİNDE SİNERJİSTİK ETKİSİNİN ARAŞTIRILMASI

Yıl 2023, , 250 - 259, 20.01.2023
https://doi.org/10.33483/jfpau.1195941

Öz

Amaç: Yaygın hastane enfeksiyon ajanı olan Pseudomonas aeruginosa (P. aeruginosa)’ nın tedavisi amacıyla antiviral ilaçlar ile antibiyotiklerin kombinasyon olarak kullanılmaları sonucunda oluşan sinerjistik etkinliğinin araştırılması amaçlanmıştır.
Gereç ve Yöntem: Antiviral ilaçların etken maddesi olarak Umifenovir (UMF) ve Ribavirin (RBV)i antibiyotiklerden kolistin ve beta laktamaz inhibitörü sulbaktam ile çalışılmıştır. Çok İlaca Dirençli (ÇİD) ve Kolistin (KOL) dirençli P. aeruginosa klinik izolatları çalışmaya dahil edilmiştir. P. aeruginosa üzerinde, UMF ve RBV’ nin ayrı ayrı Minimal İnhibisyon Konsantrasyonu (MİK) mikrodilüsyon yöntemi ile, KOL ve Sulbaktam (SUL) ile sinerjistik etkinliğine ise dama tahtası sinerji testi ile araştırılmıştır.
Sonuç ve Tartışma: Dirençli suşlarda, RBV ile KOL ve SUL kombinasyonlarında sinerji ve kısmi sinerji oluşurken (FİK = 0.375-0.75), ATCC 27853 suşu ile yapılan çalışmada indeferans ve aditif (FİK=1.0-2.0) etkileşimin daha yoğun olduğu görülmüştür. UMF ile KOL ve SUL kombinasyonlarında ise sinerji ve kısmi sinerjiler (FİK=0.53-0.75) dikkat çekerken, ATCC 27853 suşlarında aditif (FİK=1.0) etki tespit edilmiştir. Sonuçlar değerlendirildiğinde UMF ve RBV’ nin KOL ve SUL ile kombinasyon kullanımlarının dirençli suşlar üzerinde daha etkin olduğu görülmüş olup, kombinasyonların dirençli hastane enfeksiyon etkenlerinin tedavisinde alternatif bir seçenek olarak kullanılabilirliği fikri gelecek çalışmalarla desteklenmelidir.

Kaynakça

  • 1. Mayrand, D., Laforce-Lavoie, A., Larochelle, S., Langlois, A., Genest, H., Roy, M., Moulin, V. J. (2012). Angiogenic properties of myofibroblasts isolated from normal human skin wounds. Angiogenesis, 15(2), 199-212. [CrossRef]
  • 2. Gales, A.C., Menezes, L.C., Silbert, S., Sader, H.S. (2003). Dissemination in distinct Brazilian regions of an epidemic carbapenem-resistant Pseudomonas aeruginosa producing SPM metallo-β-lactamase. Journal of Antimicrobial Chemotherapy, 52(4), 699-702. [CrossRef]
  • 3. Taşbent, F.E., Doğan M., Feyzioğlu, B., Baykan, M. (2013). Çeşitli klinik örneklerden izole edilen Pseudomonas türlerinin antibiyotiklere direnci. Türk Mikrobiyoloji Cemiyeti Dergisi, 43(4), 138-43. [CrossRef]
  • 4. Lee, J.Y., Chung, E.S., Na, I.Y., Kim, H., Shin, D., Ko, K.S. (2014). Development of colistin resistance in pmrA-, phoP-, parR-and cprR-inactivated mutants of Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 69(11), 2966-2971. [CrossRef]
  • 5. Kollef, M.H. (2006). Is antibiotic cycling the answer to preventing the emergence of bacterial resistance in the intensive care unit? Clinical infectious diseases, 43(Supplement_2), S82-S88. [CrossRef]
  • 6. Henwood, C.J., Livermore, D.M., James, D., Warner, M., Pseudomonas Study Group, T. (2001). Antimicrobial susceptibility of Pseudomonas aeruginosa: Results of a UK survey and evaluation of the British Society for Antimicrobial Chemotherapy disc susceptibility test. Journal of Antimicrobial Chemotherapy, 47(6), 789-799. [CrossRef]
  • 7. Ak, S., Yıldız, F., Gündüz, A., Köroğlu, M. (2016). Pseudomonas aeruginosa suşlarının antibiyotiklere duyarlılıklarının vitek 2 otomatize sistemi ile değerlendirilmesi. Gazi Medical Journal, 27(2), 62-64. [CrossRef]
  • 8. Özünel L, Boyacıoğlu Z.İ., Güreser A.S., Taylan Ö.A.. (2014). Çorum Eğitim ve Araştırma Hastanesi’nde derin trekeal aspirat örneklerinden izole edilen Pseudomonas aeruginosa ve Acinetobacter baumannii suşlarının antimikrobiyal duyarlılık paternlerinin değerlendirilmesi. Turk Hijyen ve Deneysel Biyoloji Dergisi, 271, 81-88.
  • 9. Şenol A., Çelik İ. (2021). Yoğun bakım ünitelerinden izole edilen çok ilaca dirençli Pseudomonas aeruginosa ve Acinetobacter baumannii suşlarına karşı çeşitli antimikrobiyallerin in vitro aktiviteleri. Flora, 26(1), 96-103. [CrossRef]
  • 10. Evans, M.E., Feola, D.J., Rapp, R.P. (1999). Polymyxin B sulfate and colistin: Old antibiotics for emerging multiresistant gram-negative bacteria. Annals of Pharmacotherapy, 33(9), 960-967. [CrossRef]
  • 11. Gales, A.C., Reis, A.O., Jones, R.N. (2001). Contemporary assessment of antimicrobial susceptibility testing methods for polymyxin B and colistin: Review of available interpretative criteria and quality control guidelines. Journal of Clinical Microbiology, 39(1), 183-190. [CrossRef]
  • 12. Akova M. (2008). Sulbactam-containing β-lactamase inhibitor combinations. Clinical Microbiology and Infection, 14, 185-188. [CrossRef]
  • 13. Nakae T., Saito K., Nakajima, A. (2000). Effect of sulbactam on anti-pseudomonal activity of β-lactam antibiotics in cells producing various levels of the MexAB-OprM efflux pump and β-lactamase. Microbiology and immunology, 44(12), 997-1001.
  • 14. Sardushkin, M.V., Shiryaeva, Y.K., Donskaya, L.,Vifor, R. (2020). Colloid-Chemical and Antimicrobial Properties of Ribavirin Aqueous Solutions. Systematic Reviews in Pharmacy, 11(12), 2050-2053.
  • 15. Sanders, J.M., Monogue, M.L., Jodlowski, T.Z., Cutrell, J.B. (2020). Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. Jama, 323(18), 1824-1836. [CrossRef]
  • 16. Kadam, R.U., Wilson, I.A. (2017). Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proceedings of the National Academy of Sciences, 114(2), 206-214. [CrossRef]
  • 17. ISO [2006] ISO 20776-1 Clinical laboratory testing and in vitro diagnostic test systems - Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices - Part 1: Reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases.
  • 18. Hashemi, A.B., Nakhaei Moghaddam, M., Forghanifard, M.M., Yousefi, E. (2021). Detection of blaOXA-10 and blaOXA-48 Genes in Pseudomonas aeruginosa Clinical Isolates by Multiplex PCR. Journal of Medical Microbiology and Infectious Diseases, 9(3), 142-147.
  • 19. Verma, N., Prahraj, A., Mishra, B., Behera, B., Gupta, K. (2019). Detection of carbapenemase-producing Pseudomonas aeruginosa by phenotypic and genotypic methods in a tertiary care hospital of East India. Journal of Laboratory Physicians, 11(04), 287-291. [CrossRef]
  • 20. Timurkaynak, F., Can, F., Azap, Ö. K., Demirbilek, M., Arslan, H., Karaman, S.Ö. (2006). In vitro activities of non-traditional antimicrobials alone or in combination against multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii isolated from intensive care units. International Journal of Antimicrobial Agents, 27(3), 224-228. [CrossRef]
  • 21. Sasidharan, N.K., Sreekala, S.R., Jacob, J., Nambisan, B. (2014). In vitro synergistic effect of curcumin in combination with third generation cephalosporins against bacteria associated with infectious diarrhea. BioMed Research International, 2014. [CrossRef]
  • 22. Witzany, C., Bonhoeffer, S., Rolff, J. (2020). Is antimicrobial resistance evolution accelerating? PLoS pathogens, 16(10), e1008905. [CrossRef]
  • 23. Czaplewski, L., Bax, R., Clokie, M., Dawson, M., Fairhead, H., Fischetti, V.A., Silverman, J..Hutchings, M.I., Truman, A.W., Wilkinson, B. (2019). Alternatives to antibiotics–a pipeline portfolio Antibiotics: Past, present and future. Current Opinion in Microbiology, 51, 72-80.
  • 24. Dickey, S.W., Cheung, G.Y., Otto, M. (2017). Different drugs for bad bugs: Antivirulence strategies in the age of antibiotic resistance. Nature Reviews Drug Discovery, 16(7), 457-471. [CrossRef]
  • 25. Nadeem, S.F., Gohar, U.F., Tahir, S.F., Mukhtar, H., Pornpukdeewattana, S., Nukthamna, P., Massa, S. (2020). Antimicrobial resistance: More than 70 years of war between humans and bacteria. Critical Reviews in Microbiology, 46(5), 578-599. [CrossRef]
  • 26. Tagliabue, A., Rappuoli, R. (2018). Changing priorities in vaccinology: Antibiotic resistance moving to the top. Frontiers in İmmunology, 9, 1068. [CrossRef]
  • 27. Lu, L., Li, M., Yi, G., Liao, L., Cheng, Q., Zhu, J., Zeng, M. (2021). Screening strategies for quorum sensing inhibitors in combating bacterial infection. Journal of Pharmaceutical Analysis, 12(1), 1-14. [CrossRef]
  • 28. Kalia, V.C., Purohit, H.J. (2011). Quenching the quorum sensing system: Potential antibacterial drug targets. Critical Reviews in Microbiology, 37(2), 121-140. [CrossRef]
  • 29. Zhao, K., Li, W., Li, J., Ma, T., Wang, K., Yuan, Y., Zhou, X. (2019). TesG is a type I secretion effector of Pseudomonas aeruginosa that suppresses the host immune response during chronic infection. Nature Microbiology, 4(3), 459-469. [CrossRef]
  • 30. Kumar, L., Brenner, N., Brice, J., Klein-Seetharaman, J., Sarkar, S.K. (2021). Cephalosporins interfere with quorum sensing and improve the ability of Caenorhabditis elegans to survive Pseudomonas aeruginosa infection. Frontiers in Microbiology, 12, 598498. [CrossRef]
  • 31. Yuan, Y., Yang, X., Zeng, Q., Li, H., Fu, R., Du, L., Zhao, K. (2022). Repurposing Dimetridazole and Ribavirin to disarm Pseudomonas aeruginosa virulence by targeting the quorum sensing system. Frontiers in Microbiology, 13, 978502. [CrossRef]
  • 32. Fleitas Martínez, O., Cardoso, M.H., Ribeiro, S.M., Franco, O.L. (2019). Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Frontiers in Cellular and Infection Microbiology, 9, 74. [CrossRef]
  • 33. Di Bonaventura, G., Lupetti, V., De Fabritiis, S., Piccirilli, A., Porreca, A., Di Nicola, M., Pompilio, A. (2022). Giving drugs a second chance: antibacterial and antibiofilm effects of ciclopirox and ribavirin against cystic fibrosis Pseudomonas aeruginosa strains. International Journal of Molecular Sciences, 23(9), 5029. [CrossRef]
  • 34. She, P., Wang, Y., Luo, Z., Chen, L., Tan, R., Wang, Y., Wu, Y. (2018). Meloxicam inhibits biofilm formation and enhances antimicrobial agents efficacy by Pseudomonas aeruginosa. Microbiology Open, 7(1), e00545. [CrossRef]
  • 35. Gupta, A.K., Skinner, A.R. (2003). Ciclopirox for the treatment of superficial fungal infections: A review. International Journal of Dermatology, 42(S1), 3-9. [CrossRef]
  • 36. Bergeron, C., Cantin, A.M. (2019). Cystic fibrosis: Pathophysiology of lung disease. In Seminars in Respiratory and Critical Care Medicine Thieme Medical Publishers, 40(06), 715-726. [CrossRef]
  • 37. Chmiel, J.F., Berger, M., Konstan, M.W. (2002). The role of inflammation in the pathophysiology of CF lung disease. Clinical Reviews in Allergy & İmmunology, 23(1), 5-27. [CrossRef]
  • 38. Leneva, I.A., Falynskova, I.N., Leonova, E I., Fedyakina, I.T., Makhmudova, N.R., Osipova, E.A., Zverev, V.V. (2014). Umifenovir (Arbidol) efficacy in experimental mixed viral and bacterial pneumonia of mice. Антибиотики и химиотерапия, 59(9-10), 17-24.
  • 39. McCullers, J.A. (2011). Preventing and treating secondary bacterial infections with antiviral agents. Antiviral Therapy, 16(2), 123-135. [CrossRef]
  • 40. Noguchi, J.K., Gill, M.A. (1988). Sulbactam: A beta-lactamase inhibitor. Clinical Pharmacy, 7(1), 37-51.

INVESTIGATION OF THE SYNERGISTIC EFFECT ON THE HOSPITAL INFECTION AGENT PSEUDOMONAS AERUGINOSA OF ANTIVIRAL DRUGS

Yıl 2023, , 250 - 259, 20.01.2023
https://doi.org/10.33483/jfpau.1195941

Öz

Objective: It was aimed to investigate the synergistic efficacy of antiviral drugs and antibiotics in combination for the treatment of Pseudomonas aeruginosa (P. aeruginosa), which is a common nosocomial infection agent.
Material and Method: Umifenovir (UMF) and Ribavirin (RBV) antibiotics as active ingredients of antiviral drugs, colistin and beta-lactamase inhibitor sulbactam were studied. Multi-Drug Resistant (MDR) and Colistin (COL) resistant P. aeruginosa clinical isolates were included in the study. On Pseudomonas aeruginosa, the minimal inhibition concentration of UMF, RBV, KOL and SUL separately with the microdilution method, and the synergistic activity of UMF -RBV and KOL- Sulbactam (SUL) were examined with the checkerboard synergy test.
Result and Discussion: In resistant strains, synergy and partial synergy occurred in combinations of RBV with COL and SUL (FIC = 0.375-0.75), whereas in the study conducted with ATCC 27853 strain, inferential and additive (FIC = 1.0-2.0) interactions were observed to be more intense. While synergy and partial synergies (FIC=0.53-0.75) were noted in combinations of UMF with KOL and SUL, an additive effect (FIC=1.0) was detected in ATCC 27853 strains. When the results were evaluated, it was seen that the use of UMF and RBV in combination with KOL and SUL was more effective on resistant strains, and the idea that the combinations could be used as an alternative option in the treatment of resistant nosocomial infections should be supported by future studies.

Kaynakça

  • 1. Mayrand, D., Laforce-Lavoie, A., Larochelle, S., Langlois, A., Genest, H., Roy, M., Moulin, V. J. (2012). Angiogenic properties of myofibroblasts isolated from normal human skin wounds. Angiogenesis, 15(2), 199-212. [CrossRef]
  • 2. Gales, A.C., Menezes, L.C., Silbert, S., Sader, H.S. (2003). Dissemination in distinct Brazilian regions of an epidemic carbapenem-resistant Pseudomonas aeruginosa producing SPM metallo-β-lactamase. Journal of Antimicrobial Chemotherapy, 52(4), 699-702. [CrossRef]
  • 3. Taşbent, F.E., Doğan M., Feyzioğlu, B., Baykan, M. (2013). Çeşitli klinik örneklerden izole edilen Pseudomonas türlerinin antibiyotiklere direnci. Türk Mikrobiyoloji Cemiyeti Dergisi, 43(4), 138-43. [CrossRef]
  • 4. Lee, J.Y., Chung, E.S., Na, I.Y., Kim, H., Shin, D., Ko, K.S. (2014). Development of colistin resistance in pmrA-, phoP-, parR-and cprR-inactivated mutants of Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 69(11), 2966-2971. [CrossRef]
  • 5. Kollef, M.H. (2006). Is antibiotic cycling the answer to preventing the emergence of bacterial resistance in the intensive care unit? Clinical infectious diseases, 43(Supplement_2), S82-S88. [CrossRef]
  • 6. Henwood, C.J., Livermore, D.M., James, D., Warner, M., Pseudomonas Study Group, T. (2001). Antimicrobial susceptibility of Pseudomonas aeruginosa: Results of a UK survey and evaluation of the British Society for Antimicrobial Chemotherapy disc susceptibility test. Journal of Antimicrobial Chemotherapy, 47(6), 789-799. [CrossRef]
  • 7. Ak, S., Yıldız, F., Gündüz, A., Köroğlu, M. (2016). Pseudomonas aeruginosa suşlarının antibiyotiklere duyarlılıklarının vitek 2 otomatize sistemi ile değerlendirilmesi. Gazi Medical Journal, 27(2), 62-64. [CrossRef]
  • 8. Özünel L, Boyacıoğlu Z.İ., Güreser A.S., Taylan Ö.A.. (2014). Çorum Eğitim ve Araştırma Hastanesi’nde derin trekeal aspirat örneklerinden izole edilen Pseudomonas aeruginosa ve Acinetobacter baumannii suşlarının antimikrobiyal duyarlılık paternlerinin değerlendirilmesi. Turk Hijyen ve Deneysel Biyoloji Dergisi, 271, 81-88.
  • 9. Şenol A., Çelik İ. (2021). Yoğun bakım ünitelerinden izole edilen çok ilaca dirençli Pseudomonas aeruginosa ve Acinetobacter baumannii suşlarına karşı çeşitli antimikrobiyallerin in vitro aktiviteleri. Flora, 26(1), 96-103. [CrossRef]
  • 10. Evans, M.E., Feola, D.J., Rapp, R.P. (1999). Polymyxin B sulfate and colistin: Old antibiotics for emerging multiresistant gram-negative bacteria. Annals of Pharmacotherapy, 33(9), 960-967. [CrossRef]
  • 11. Gales, A.C., Reis, A.O., Jones, R.N. (2001). Contemporary assessment of antimicrobial susceptibility testing methods for polymyxin B and colistin: Review of available interpretative criteria and quality control guidelines. Journal of Clinical Microbiology, 39(1), 183-190. [CrossRef]
  • 12. Akova M. (2008). Sulbactam-containing β-lactamase inhibitor combinations. Clinical Microbiology and Infection, 14, 185-188. [CrossRef]
  • 13. Nakae T., Saito K., Nakajima, A. (2000). Effect of sulbactam on anti-pseudomonal activity of β-lactam antibiotics in cells producing various levels of the MexAB-OprM efflux pump and β-lactamase. Microbiology and immunology, 44(12), 997-1001.
  • 14. Sardushkin, M.V., Shiryaeva, Y.K., Donskaya, L.,Vifor, R. (2020). Colloid-Chemical and Antimicrobial Properties of Ribavirin Aqueous Solutions. Systematic Reviews in Pharmacy, 11(12), 2050-2053.
  • 15. Sanders, J.M., Monogue, M.L., Jodlowski, T.Z., Cutrell, J.B. (2020). Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. Jama, 323(18), 1824-1836. [CrossRef]
  • 16. Kadam, R.U., Wilson, I.A. (2017). Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proceedings of the National Academy of Sciences, 114(2), 206-214. [CrossRef]
  • 17. ISO [2006] ISO 20776-1 Clinical laboratory testing and in vitro diagnostic test systems - Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices - Part 1: Reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases.
  • 18. Hashemi, A.B., Nakhaei Moghaddam, M., Forghanifard, M.M., Yousefi, E. (2021). Detection of blaOXA-10 and blaOXA-48 Genes in Pseudomonas aeruginosa Clinical Isolates by Multiplex PCR. Journal of Medical Microbiology and Infectious Diseases, 9(3), 142-147.
  • 19. Verma, N., Prahraj, A., Mishra, B., Behera, B., Gupta, K. (2019). Detection of carbapenemase-producing Pseudomonas aeruginosa by phenotypic and genotypic methods in a tertiary care hospital of East India. Journal of Laboratory Physicians, 11(04), 287-291. [CrossRef]
  • 20. Timurkaynak, F., Can, F., Azap, Ö. K., Demirbilek, M., Arslan, H., Karaman, S.Ö. (2006). In vitro activities of non-traditional antimicrobials alone or in combination against multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii isolated from intensive care units. International Journal of Antimicrobial Agents, 27(3), 224-228. [CrossRef]
  • 21. Sasidharan, N.K., Sreekala, S.R., Jacob, J., Nambisan, B. (2014). In vitro synergistic effect of curcumin in combination with third generation cephalosporins against bacteria associated with infectious diarrhea. BioMed Research International, 2014. [CrossRef]
  • 22. Witzany, C., Bonhoeffer, S., Rolff, J. (2020). Is antimicrobial resistance evolution accelerating? PLoS pathogens, 16(10), e1008905. [CrossRef]
  • 23. Czaplewski, L., Bax, R., Clokie, M., Dawson, M., Fairhead, H., Fischetti, V.A., Silverman, J..Hutchings, M.I., Truman, A.W., Wilkinson, B. (2019). Alternatives to antibiotics–a pipeline portfolio Antibiotics: Past, present and future. Current Opinion in Microbiology, 51, 72-80.
  • 24. Dickey, S.W., Cheung, G.Y., Otto, M. (2017). Different drugs for bad bugs: Antivirulence strategies in the age of antibiotic resistance. Nature Reviews Drug Discovery, 16(7), 457-471. [CrossRef]
  • 25. Nadeem, S.F., Gohar, U.F., Tahir, S.F., Mukhtar, H., Pornpukdeewattana, S., Nukthamna, P., Massa, S. (2020). Antimicrobial resistance: More than 70 years of war between humans and bacteria. Critical Reviews in Microbiology, 46(5), 578-599. [CrossRef]
  • 26. Tagliabue, A., Rappuoli, R. (2018). Changing priorities in vaccinology: Antibiotic resistance moving to the top. Frontiers in İmmunology, 9, 1068. [CrossRef]
  • 27. Lu, L., Li, M., Yi, G., Liao, L., Cheng, Q., Zhu, J., Zeng, M. (2021). Screening strategies for quorum sensing inhibitors in combating bacterial infection. Journal of Pharmaceutical Analysis, 12(1), 1-14. [CrossRef]
  • 28. Kalia, V.C., Purohit, H.J. (2011). Quenching the quorum sensing system: Potential antibacterial drug targets. Critical Reviews in Microbiology, 37(2), 121-140. [CrossRef]
  • 29. Zhao, K., Li, W., Li, J., Ma, T., Wang, K., Yuan, Y., Zhou, X. (2019). TesG is a type I secretion effector of Pseudomonas aeruginosa that suppresses the host immune response during chronic infection. Nature Microbiology, 4(3), 459-469. [CrossRef]
  • 30. Kumar, L., Brenner, N., Brice, J., Klein-Seetharaman, J., Sarkar, S.K. (2021). Cephalosporins interfere with quorum sensing and improve the ability of Caenorhabditis elegans to survive Pseudomonas aeruginosa infection. Frontiers in Microbiology, 12, 598498. [CrossRef]
  • 31. Yuan, Y., Yang, X., Zeng, Q., Li, H., Fu, R., Du, L., Zhao, K. (2022). Repurposing Dimetridazole and Ribavirin to disarm Pseudomonas aeruginosa virulence by targeting the quorum sensing system. Frontiers in Microbiology, 13, 978502. [CrossRef]
  • 32. Fleitas Martínez, O., Cardoso, M.H., Ribeiro, S.M., Franco, O.L. (2019). Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Frontiers in Cellular and Infection Microbiology, 9, 74. [CrossRef]
  • 33. Di Bonaventura, G., Lupetti, V., De Fabritiis, S., Piccirilli, A., Porreca, A., Di Nicola, M., Pompilio, A. (2022). Giving drugs a second chance: antibacterial and antibiofilm effects of ciclopirox and ribavirin against cystic fibrosis Pseudomonas aeruginosa strains. International Journal of Molecular Sciences, 23(9), 5029. [CrossRef]
  • 34. She, P., Wang, Y., Luo, Z., Chen, L., Tan, R., Wang, Y., Wu, Y. (2018). Meloxicam inhibits biofilm formation and enhances antimicrobial agents efficacy by Pseudomonas aeruginosa. Microbiology Open, 7(1), e00545. [CrossRef]
  • 35. Gupta, A.K., Skinner, A.R. (2003). Ciclopirox for the treatment of superficial fungal infections: A review. International Journal of Dermatology, 42(S1), 3-9. [CrossRef]
  • 36. Bergeron, C., Cantin, A.M. (2019). Cystic fibrosis: Pathophysiology of lung disease. In Seminars in Respiratory and Critical Care Medicine Thieme Medical Publishers, 40(06), 715-726. [CrossRef]
  • 37. Chmiel, J.F., Berger, M., Konstan, M.W. (2002). The role of inflammation in the pathophysiology of CF lung disease. Clinical Reviews in Allergy & İmmunology, 23(1), 5-27. [CrossRef]
  • 38. Leneva, I.A., Falynskova, I.N., Leonova, E I., Fedyakina, I.T., Makhmudova, N.R., Osipova, E.A., Zverev, V.V. (2014). Umifenovir (Arbidol) efficacy in experimental mixed viral and bacterial pneumonia of mice. Антибиотики и химиотерапия, 59(9-10), 17-24.
  • 39. McCullers, J.A. (2011). Preventing and treating secondary bacterial infections with antiviral agents. Antiviral Therapy, 16(2), 123-135. [CrossRef]
  • 40. Noguchi, J.K., Gill, M.A. (1988). Sulbactam: A beta-lactamase inhibitor. Clinical Pharmacy, 7(1), 37-51.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Eczacılık ve İlaç Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Şükran Öztürk 0000-0003-2729-171X

Yayımlanma Tarihi 20 Ocak 2023
Gönderilme Tarihi 28 Ekim 2022
Kabul Tarihi 12 Aralık 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Öztürk, Ş. (2023). ANTİVİRAL İLAÇLARIN HASTANE ENFEKSİYON ETKENİ PSEUDOMONAS AERUGINOSA ÜZERİNDE SİNERJİSTİK ETKİSİNİN ARAŞTIRILMASI. Journal of Faculty of Pharmacy of Ankara University, 47(1), 250-259. https://doi.org/10.33483/jfpau.1195941
AMA Öztürk Ş. ANTİVİRAL İLAÇLARIN HASTANE ENFEKSİYON ETKENİ PSEUDOMONAS AERUGINOSA ÜZERİNDE SİNERJİSTİK ETKİSİNİN ARAŞTIRILMASI. Ankara Ecz. Fak. Derg. Ocak 2023;47(1):250-259. doi:10.33483/jfpau.1195941
Chicago Öztürk, Şükran. “ANTİVİRAL İLAÇLARIN HASTANE ENFEKSİYON ETKENİ PSEUDOMONAS AERUGINOSA ÜZERİNDE SİNERJİSTİK ETKİSİNİN ARAŞTIRILMASI”. Journal of Faculty of Pharmacy of Ankara University 47, sy. 1 (Ocak 2023): 250-59. https://doi.org/10.33483/jfpau.1195941.
EndNote Öztürk Ş (01 Ocak 2023) ANTİVİRAL İLAÇLARIN HASTANE ENFEKSİYON ETKENİ PSEUDOMONAS AERUGINOSA ÜZERİNDE SİNERJİSTİK ETKİSİNİN ARAŞTIRILMASI. Journal of Faculty of Pharmacy of Ankara University 47 1 250–259.
IEEE Ş. Öztürk, “ANTİVİRAL İLAÇLARIN HASTANE ENFEKSİYON ETKENİ PSEUDOMONAS AERUGINOSA ÜZERİNDE SİNERJİSTİK ETKİSİNİN ARAŞTIRILMASI”, Ankara Ecz. Fak. Derg., c. 47, sy. 1, ss. 250–259, 2023, doi: 10.33483/jfpau.1195941.
ISNAD Öztürk, Şükran. “ANTİVİRAL İLAÇLARIN HASTANE ENFEKSİYON ETKENİ PSEUDOMONAS AERUGINOSA ÜZERİNDE SİNERJİSTİK ETKİSİNİN ARAŞTIRILMASI”. Journal of Faculty of Pharmacy of Ankara University 47/1 (Ocak 2023), 250-259. https://doi.org/10.33483/jfpau.1195941.
JAMA Öztürk Ş. ANTİVİRAL İLAÇLARIN HASTANE ENFEKSİYON ETKENİ PSEUDOMONAS AERUGINOSA ÜZERİNDE SİNERJİSTİK ETKİSİNİN ARAŞTIRILMASI. Ankara Ecz. Fak. Derg. 2023;47:250–259.
MLA Öztürk, Şükran. “ANTİVİRAL İLAÇLARIN HASTANE ENFEKSİYON ETKENİ PSEUDOMONAS AERUGINOSA ÜZERİNDE SİNERJİSTİK ETKİSİNİN ARAŞTIRILMASI”. Journal of Faculty of Pharmacy of Ankara University, c. 47, sy. 1, 2023, ss. 250-9, doi:10.33483/jfpau.1195941.
Vancouver Öztürk Ş. ANTİVİRAL İLAÇLARIN HASTANE ENFEKSİYON ETKENİ PSEUDOMONAS AERUGINOSA ÜZERİNDE SİNERJİSTİK ETKİSİNİN ARAŞTIRILMASI. Ankara Ecz. Fak. Derg. 2023;47(1):250-9.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.