Araştırma Makalesi
BibTex RIS Kaynak Göster

HYDROCHLOROTHIAZIDE AS A NEW SENOMORPHIC DRUG CANDIDATE

Yıl 2025, Cilt: 49 Sayı: 2, 309 - 319, 19.05.2025
https://doi.org/10.33483/jfpau.1456430

Öz

Objective: It is known that chemotherapeutics used in conventional cancer treatment induce cellular senescence in both cancer and non-cancerous cells. Important features of senescent cells include prominent changes in cell morphology and the secretion of various cytokines, chemokines, growth factors, and matrix metalloproteinases from these cells, called senescence-associated secretory phenotype (SASP). It has been shown that SASP factors cause chemotherapeutic drug resistance, cancer cell proliferation, and migration in the tumor microenvironment through a paracrine effect. Therefore, developing senomorphic drugs that selectively suppress senescent cell secretion has gained importance as a new adjuvant therapy in cancer treatment. Rho kinase enzyme inhibition has been shown to inhibit the secretory activity of senescent cells. A recent study showed that hydrochlorothiazide, one of the diuretic drugs used to treat hypertension, inhibits the Rho kinase enzyme. In this study, we aimed to evaluate the potential of hydrochlorothiazide, which has been shown to inhibit Rho kinase, as a new senomorphic drug.
Material and Method: Senescence was induced in HeLa cells with doxorubicin, a chemotherapeutic that was determined to induce senescence in our previous studies. Then, senescent cell secretomes were collected in groups with and without hydrochlorothiazide, and senomorphic activity was evaluated by measuring IL-6, one of the most prominent SASP factors in these secretomes.
Result and Discussion: The data obtained in this study show that hydrochlorothiazide reduces both cell size and secreted IL-6 levels in doxorubicin-induced senescent HeLa cancer cells. These data indicate that hydrochlorothiazide has a senomorphic effect. The use of senomorphic drugs as adjuvant therapy to prevent their undesirable effects is important for providing more effective cancer treatment.

Kaynakça

  • 1. Hayflick, L., Moorhead, P.S. (1961). The serial cultivation of human diploid cell strains. Experimental Cell Research, 25, 585-621. [CrossRef]
  • 2. Chen, Q., Fischer, A., Reagan, J.D., Yan, L.J., Ames, B.N. (1995). Oxidative DNA damage and senescence of human diploid fibroblast cells. Proceedings of the National Academy of Sciences of the United States of America, 92(10), 4337-4341. [CrossRef]
  • 3. Frippiat, C., Chen, Q.M., Zdanov, S., Magalhaes, J.P., Remacle, J., Toussaint, O. (2001). Subcytotoxic H2O2 stress triggers a release of transforming growth factor-beta 1, which induces biomarkers of cellular senescence of human diploid fibroblasts. The Journal of Biological Chemistry, 276(4), 2531-2537. [CrossRef]
  • 4. Robles, S.J., Adami, G.R. (1998). Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene, 16(9), 1113-1123. [CrossRef]
  • 5. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., Lowe, S.W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88(5), 593-602. [CrossRef]
  • 6. Coppé, J.P., Patil, C.K., Rodier, F., Krtolica, A., Beauséjour, C.M., Parrinello, S., Hodgson, J.G., Chin, K., Desprez, P.Y., Campisi, J. (2010). A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PloS One, 5(2), e9188. [CrossRef]
  • 7. Basisty, N., Kale, A., Jeon, O.H., Kuehnemann, C., Payne, T., Rao, C., Holtz, A., Shah, S., Sharma, V., Ferrucci, L., Campisi, J., Schilling, B. (2020). A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biology, 18(1), e3000599. [CrossRef]
  • 8. Kuilman, T., Peeper, D.S. (2009). Senescence-messaging secretome: SMS-ing cellular stress. Nature Reviews Cancer, 9(2), 81-94. [CrossRef]
  • 9. Acosta, J.C., Gil, J. (2012). Senescence: A new weapon for cancer therapy. Trends in Cell Biology, 22(4), 211–219. [CrossRef]
  • 10. Hu, C., Zhang, X., Teng, T., Ma, Z.G., Tang, Q. Z. (2022). Cellular Senescence in cardiovascular diseases: A systematic review. Aging and Disease, 13(1), 103–128. [CrossRef]
  • 11. Liu R.M. (2022). Aging, cellular senescence, and Alzheimer's disease. International Journal of Molecular Sciences, 23(4), 1989. [CrossRef]
  • 12. Föger-Samwald, U., Kerschan-Schindl, K., Butylina, M., Pietschmann, P. (2022). Age related osteoporosis: Targeting cellular senescence. International Journal of Molecular Sciences, 23(5), 2701. [CrossRef]
  • 13. Narasimhan, A., Flores, R.R., Robbins, P.D., Niedernhofer, L.J. (2021). Role of cellular senescence in type II diabetes. Endocrinology, 162(10), bqab136. [CrossRef]
  • 14. Schafer, M.J., White, T.A., Iijima, K., Haak, A.J., Ligresti, G., Atkinson, E.J., Oberg, A.L., Birch, J., Salmonowicz, H., Zhu, Y., Mazula, D.L., Brooks, R.W., Fuhrmann-Stroissnigg, H., Pirtskhalava, T., Prakash, Y.S., Tchkonia, T., Robbins, P.D., Aubry, M.C., Passos, J.F., Kirkland, J.L., Tschumperlin, D.J., Kita, H., LeBrasseur, N. K. (2017). Cellular senescence mediates fibrotic pulmonary disease. Nature Communications, 8, 14532. [CrossRef]
  • 15. Zhang, Y., Huang, S., Xie, B., Zhong, Y. (2024). Aging, cellular senescence, and glaucoma. Aging and Disease, 15(2), 546-564. [CrossRef]
  • 16. Gilbert, L.A., Hemann, M.T. (2010). DNA damage-mediated induction of a chemoresistant niche. Cell, 143(3), 355-366. [CrossRef]
  • 17. Gordon, R.R., Nelson, P.S. (2012). Cellular senescence and cancer chemotherapy resistance. Drug Resistance Updates, 15(1-2), 123-131. [CrossRef]
  • 18. Myrianthopoulos, V., Evangelou, K., Vasileiou, P.V.S., Cooks, T., Vassilakopoulos, T.P., Pangalis, G.A., Kouloukoussa, M., Kittas, C., Georgakilas, A.G., Gorgoulis, V.G. (2019). Senescence and senotherapeutics: a new field in cancer therapy. Pharmacology & Therapeutics, 193, 31-49. [CrossRef]
  • 19. Moiseeva, O., Deschênes-Simard, X., St-Germain, E., Igelmann, S., Huot, G., Cadar, A.E., Bourdeau, V., Pollak, M.N., Ferbeyre, G. (2013). Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell, 12(3), 489-498. [CrossRef]
  • 20. Liu, S., Uppal, H., Demaria, M., Desprez, P.Y., Campisi, J., Kapahi, P. (2015). Simvastatin suppresses breast cancer cell proliferation induced by senescent cells. Scientific Reports, 5, 17895. [CrossRef]
  • 21. Laberge, R.M., Zhou, L., Sarantos, M.R., Rodier, F., Freund, A., de Keizer, P. L., Liu, S., Demaria, M., Cong, Y.S., Kapahi, P., Desprez, P.Y., Hughes, R.E., Campisi, J. (2012). Glucocorticoids suppress selected components of the senescence-associated secretory phenotype. Aging Cell, 11(4), 569-578. [CrossRef]
  • 22. Laberge, R.M., Sun, Y., Orjalo, A.V., Patil, C.K., Freund, A., Zhou, L., Curran, S.C., Davalos, A.R., Wilson-Edell, K.A., Liu, S., Limbad, C., Demaria, M., Li, P., Hubbard, G.B., Ikeno, Y., Javors, M., Desprez, P.Y., Benz, C.C., Kapahi, P., Nelson, P.S., Campisi, J. (2015). MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nature Cell Biology, 17(8), 1049-1061. [CrossRef]
  • 23. Lim, H., Park, H., Kim, H.P. (2015). Effects of flavonoids on senescence-associated secretory phenotype formation from bleomycin-induced senescence in BJ fibroblasts. Biochemical Pharmacology, 96(4), 337-348. [CrossRef]
  • 24. Özdemir, A., Şimay Demir, Y.D., Yeşilyurt, Z.E., Ark, M. (2023). Senescent cells and SASP in cancer microenvironment: New approaches in cancer therapy. Advances in Protein Chemistry and Structural Biology, 133, 115-158. [CrossRef]
  • 25. Şimay Demir, Y.D., Özdemir, A., Sucularlı, C., Benhür, E., Ark, M. (2021). The implication of ROCK 2 as a potential senotherapeutic target via the suppression of the harmful effects of the SASP: Do senescent cancer cells really engulf the other cells? Cellular Signalling, 84, 110007. [CrossRef]
  • 26. Yokota, K., Tanaka, Y., Harada, H., Kaida, T., Nakamoto, S., Soeno, T., Fujiyama, Y., Yokota, M., Kojo, K., Miura, H., Yamanashi, T., Sato, T., Nakamura, T., Watanabe, M., Yamashita, K. (2019). WiNTRLINC1/ASCL2/c-Myc axis characteristics of colon cancer with differentiated histology at young onset and essential for cell viability. Annals of Surgical Oncology, 26(13), 4826-4834. [CrossRef]
  • 27. Mondaca-Ruff, D., Araos, P., Yañez, C.E., Novoa, U.F., Mora, I.G., Ocaranza, M.P., Jalil, J.E. (2021). Hydrochlorothiazide reduces cardiac hypertrophy, fibrosis and rho-kinase activation in DOCA-salt induced hypertension. Journal of Cardiovascular Pharmacology and Therapeutics, 26(6), 724-735. [CrossRef]
  • 28. Rodier F. (2013). Detection of the senescence-associated secretory phenotype (SASP). Methods in Molecular Biology (Clifton, N.J.), 965, 165-173. [CrossRef]
  • 29. Partridge, L., Fuentealba, M., Kennedy, B.K. (2020). The quest to slow ageing through drug discovery. Nature reviews. Drug discovery, 19(8), 513-532. [CrossRef]
  • 30. Rolt, A., Nair, A., Cox, L.S. (2019). Optimisation of a screening platform for determining IL-6 inflammatory signalling in the senescence-associated secretory phenotype (SASP). Biogerontology, 20(3), 359-371. [CrossRef]
  • 31. Şimay, Y.D., Özdemir, A., İbişoğlu, B., Ark, M. (2018). The connection between the cardiac glycoside-induced senescent cell morphology and Rho/Rho kinase pathway. Cytoskeleton (Hoboken, N.J.), 75(11), 461–471. [CrossRef]
  • 32. Aloud, B.M., Petkau, J.C., Yu, L., McCallum, J., Kirby, C., Netticadan, T., Blewett, H. (2020). Effects of cyanidin 3-O-glucoside and hydrochlorothiazide on T-cell phenotypes and function in spontaneously hypertensive rats. Food & Function, 11(10), 8560-8572. [CrossRef]
  • 33. Mitini-Nkhoma, S.C., Fernando, N., Ishaka, G.K.D., Handunnetti, S.M., Pathirana, S.L. (2021). Ion transport modulators differentially modulate inflammatory responses in THP-1-derived macrophages. Journal of Immunology Research, 2021, 8832586. [CrossRef]
  • 34. Romashkan, S., Chang, H., Hadley, E.C. (2021). National institute on aging workshop: Repurposing drugs or dietary supplements for their senolytic or senomorphic effects: Considerations for clinical trials. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 76(6), 1144-1152. [CrossRef]

YENİ BİR SENOMORFİK İLAÇ ADAYI OLARAK HİDROKLOROTİYAZİD

Yıl 2025, Cilt: 49 Sayı: 2, 309 - 319, 19.05.2025
https://doi.org/10.33483/jfpau.1456430

Öz

Amaç: Konvansiyonel kanser tedavisinde kullanılan kemoterapötiklerin hem kanser hem de kanser olmayan hücrelerde hücresel senesensi indüklediği bilinmektedir. Senesent hücrelerin önemli özellikleri, hücre morfolojilerinde belirgin değişikliklerin olması ve bu hücrelerden senesens ilişkili sekretuvar fenotip (SASP) olarak adlandırılan çeşitli sitokin, kemokin, büyüme faktörü ve matriks metalloproteinazların salgılanmasıdır. SASP faktörlerinin parakrin etki ile tümör mikroçevresinde kemoterapötik ilaç direncine, kanser hücre proliferasyonuna ve migrasyonuna neden olduğu gösterilmiştir. Bu nedenle, seçici olarak senesent hücre sekresyonunu baskılayan senomorfik etkili ilaçların geliştirilmesi, kanser tedavisinde yeni bir adjuvan tedavi olarak önem kazanmıştır. Rho kinaz enzim inhibisyonunun senesent hücrelerin sekretuvar aktivitesini inhibe ettiği gösterilmiştir. Yakın zamanlı bir çalışmada ise hipertansiyon tedavisinde kullanılan diüretik ilaçlardan biri olan hidroklorotiyazidin Rho kinaz enzim inhibisyonu yaptığı gösterilmiştir. Bu çalışmamızda Rho kinaz inhibisyonu yaptığı gösterilen hidroklorotiyazidin yeni bir senomorfik ilaç olma potansiyelinin değerlendirilmesi amaçlanmıştır.
Gereç ve Yöntem: Önceki çalışmalarımızda senesensi indüklediği belirlenen bir kemoterapötik olan doksorubisin ile HeLa hücrelerinde senesens indüklenmiştir. Daha sonra hidroklorotiyazid içeren ve içermeyen gruplarda senesent hücre sekretomu toplanarak bu sekretomlarda en belirgin SASP faktörlerinden biri olan IL-6’nın ölçülmesi ile senomorfik etkinlik değerlendirilmiştir.
Sonuç ve Tartışma: Bu çalışmamızda elde ettiğimiz veriler hidroklorotiyazidin, doksorubisin ile indüklenen senesent HeLa kanser hücrelerinin hem hücre boyutunu hem de sekrete edilen IL-6 düzeyini azalttığını göstermektedir. Bu verilerimiz hidroklorotiyazidin senomorfik etkiye sahip olduğuna işaret etmektedir. Kemoterapötiklerin yanında onların istenmeyen etkilerini engelleyebilecek adjuvan tedavi olarak senomorfik ilaçların kullanılması, daha efektif bir kanser tedavisi sağlanması açısından önemlidir.

Kaynakça

  • 1. Hayflick, L., Moorhead, P.S. (1961). The serial cultivation of human diploid cell strains. Experimental Cell Research, 25, 585-621. [CrossRef]
  • 2. Chen, Q., Fischer, A., Reagan, J.D., Yan, L.J., Ames, B.N. (1995). Oxidative DNA damage and senescence of human diploid fibroblast cells. Proceedings of the National Academy of Sciences of the United States of America, 92(10), 4337-4341. [CrossRef]
  • 3. Frippiat, C., Chen, Q.M., Zdanov, S., Magalhaes, J.P., Remacle, J., Toussaint, O. (2001). Subcytotoxic H2O2 stress triggers a release of transforming growth factor-beta 1, which induces biomarkers of cellular senescence of human diploid fibroblasts. The Journal of Biological Chemistry, 276(4), 2531-2537. [CrossRef]
  • 4. Robles, S.J., Adami, G.R. (1998). Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene, 16(9), 1113-1123. [CrossRef]
  • 5. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., Lowe, S.W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88(5), 593-602. [CrossRef]
  • 6. Coppé, J.P., Patil, C.K., Rodier, F., Krtolica, A., Beauséjour, C.M., Parrinello, S., Hodgson, J.G., Chin, K., Desprez, P.Y., Campisi, J. (2010). A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PloS One, 5(2), e9188. [CrossRef]
  • 7. Basisty, N., Kale, A., Jeon, O.H., Kuehnemann, C., Payne, T., Rao, C., Holtz, A., Shah, S., Sharma, V., Ferrucci, L., Campisi, J., Schilling, B. (2020). A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biology, 18(1), e3000599. [CrossRef]
  • 8. Kuilman, T., Peeper, D.S. (2009). Senescence-messaging secretome: SMS-ing cellular stress. Nature Reviews Cancer, 9(2), 81-94. [CrossRef]
  • 9. Acosta, J.C., Gil, J. (2012). Senescence: A new weapon for cancer therapy. Trends in Cell Biology, 22(4), 211–219. [CrossRef]
  • 10. Hu, C., Zhang, X., Teng, T., Ma, Z.G., Tang, Q. Z. (2022). Cellular Senescence in cardiovascular diseases: A systematic review. Aging and Disease, 13(1), 103–128. [CrossRef]
  • 11. Liu R.M. (2022). Aging, cellular senescence, and Alzheimer's disease. International Journal of Molecular Sciences, 23(4), 1989. [CrossRef]
  • 12. Föger-Samwald, U., Kerschan-Schindl, K., Butylina, M., Pietschmann, P. (2022). Age related osteoporosis: Targeting cellular senescence. International Journal of Molecular Sciences, 23(5), 2701. [CrossRef]
  • 13. Narasimhan, A., Flores, R.R., Robbins, P.D., Niedernhofer, L.J. (2021). Role of cellular senescence in type II diabetes. Endocrinology, 162(10), bqab136. [CrossRef]
  • 14. Schafer, M.J., White, T.A., Iijima, K., Haak, A.J., Ligresti, G., Atkinson, E.J., Oberg, A.L., Birch, J., Salmonowicz, H., Zhu, Y., Mazula, D.L., Brooks, R.W., Fuhrmann-Stroissnigg, H., Pirtskhalava, T., Prakash, Y.S., Tchkonia, T., Robbins, P.D., Aubry, M.C., Passos, J.F., Kirkland, J.L., Tschumperlin, D.J., Kita, H., LeBrasseur, N. K. (2017). Cellular senescence mediates fibrotic pulmonary disease. Nature Communications, 8, 14532. [CrossRef]
  • 15. Zhang, Y., Huang, S., Xie, B., Zhong, Y. (2024). Aging, cellular senescence, and glaucoma. Aging and Disease, 15(2), 546-564. [CrossRef]
  • 16. Gilbert, L.A., Hemann, M.T. (2010). DNA damage-mediated induction of a chemoresistant niche. Cell, 143(3), 355-366. [CrossRef]
  • 17. Gordon, R.R., Nelson, P.S. (2012). Cellular senescence and cancer chemotherapy resistance. Drug Resistance Updates, 15(1-2), 123-131. [CrossRef]
  • 18. Myrianthopoulos, V., Evangelou, K., Vasileiou, P.V.S., Cooks, T., Vassilakopoulos, T.P., Pangalis, G.A., Kouloukoussa, M., Kittas, C., Georgakilas, A.G., Gorgoulis, V.G. (2019). Senescence and senotherapeutics: a new field in cancer therapy. Pharmacology & Therapeutics, 193, 31-49. [CrossRef]
  • 19. Moiseeva, O., Deschênes-Simard, X., St-Germain, E., Igelmann, S., Huot, G., Cadar, A.E., Bourdeau, V., Pollak, M.N., Ferbeyre, G. (2013). Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell, 12(3), 489-498. [CrossRef]
  • 20. Liu, S., Uppal, H., Demaria, M., Desprez, P.Y., Campisi, J., Kapahi, P. (2015). Simvastatin suppresses breast cancer cell proliferation induced by senescent cells. Scientific Reports, 5, 17895. [CrossRef]
  • 21. Laberge, R.M., Zhou, L., Sarantos, M.R., Rodier, F., Freund, A., de Keizer, P. L., Liu, S., Demaria, M., Cong, Y.S., Kapahi, P., Desprez, P.Y., Hughes, R.E., Campisi, J. (2012). Glucocorticoids suppress selected components of the senescence-associated secretory phenotype. Aging Cell, 11(4), 569-578. [CrossRef]
  • 22. Laberge, R.M., Sun, Y., Orjalo, A.V., Patil, C.K., Freund, A., Zhou, L., Curran, S.C., Davalos, A.R., Wilson-Edell, K.A., Liu, S., Limbad, C., Demaria, M., Li, P., Hubbard, G.B., Ikeno, Y., Javors, M., Desprez, P.Y., Benz, C.C., Kapahi, P., Nelson, P.S., Campisi, J. (2015). MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nature Cell Biology, 17(8), 1049-1061. [CrossRef]
  • 23. Lim, H., Park, H., Kim, H.P. (2015). Effects of flavonoids on senescence-associated secretory phenotype formation from bleomycin-induced senescence in BJ fibroblasts. Biochemical Pharmacology, 96(4), 337-348. [CrossRef]
  • 24. Özdemir, A., Şimay Demir, Y.D., Yeşilyurt, Z.E., Ark, M. (2023). Senescent cells and SASP in cancer microenvironment: New approaches in cancer therapy. Advances in Protein Chemistry and Structural Biology, 133, 115-158. [CrossRef]
  • 25. Şimay Demir, Y.D., Özdemir, A., Sucularlı, C., Benhür, E., Ark, M. (2021). The implication of ROCK 2 as a potential senotherapeutic target via the suppression of the harmful effects of the SASP: Do senescent cancer cells really engulf the other cells? Cellular Signalling, 84, 110007. [CrossRef]
  • 26. Yokota, K., Tanaka, Y., Harada, H., Kaida, T., Nakamoto, S., Soeno, T., Fujiyama, Y., Yokota, M., Kojo, K., Miura, H., Yamanashi, T., Sato, T., Nakamura, T., Watanabe, M., Yamashita, K. (2019). WiNTRLINC1/ASCL2/c-Myc axis characteristics of colon cancer with differentiated histology at young onset and essential for cell viability. Annals of Surgical Oncology, 26(13), 4826-4834. [CrossRef]
  • 27. Mondaca-Ruff, D., Araos, P., Yañez, C.E., Novoa, U.F., Mora, I.G., Ocaranza, M.P., Jalil, J.E. (2021). Hydrochlorothiazide reduces cardiac hypertrophy, fibrosis and rho-kinase activation in DOCA-salt induced hypertension. Journal of Cardiovascular Pharmacology and Therapeutics, 26(6), 724-735. [CrossRef]
  • 28. Rodier F. (2013). Detection of the senescence-associated secretory phenotype (SASP). Methods in Molecular Biology (Clifton, N.J.), 965, 165-173. [CrossRef]
  • 29. Partridge, L., Fuentealba, M., Kennedy, B.K. (2020). The quest to slow ageing through drug discovery. Nature reviews. Drug discovery, 19(8), 513-532. [CrossRef]
  • 30. Rolt, A., Nair, A., Cox, L.S. (2019). Optimisation of a screening platform for determining IL-6 inflammatory signalling in the senescence-associated secretory phenotype (SASP). Biogerontology, 20(3), 359-371. [CrossRef]
  • 31. Şimay, Y.D., Özdemir, A., İbişoğlu, B., Ark, M. (2018). The connection between the cardiac glycoside-induced senescent cell morphology and Rho/Rho kinase pathway. Cytoskeleton (Hoboken, N.J.), 75(11), 461–471. [CrossRef]
  • 32. Aloud, B.M., Petkau, J.C., Yu, L., McCallum, J., Kirby, C., Netticadan, T., Blewett, H. (2020). Effects of cyanidin 3-O-glucoside and hydrochlorothiazide on T-cell phenotypes and function in spontaneously hypertensive rats. Food & Function, 11(10), 8560-8572. [CrossRef]
  • 33. Mitini-Nkhoma, S.C., Fernando, N., Ishaka, G.K.D., Handunnetti, S.M., Pathirana, S.L. (2021). Ion transport modulators differentially modulate inflammatory responses in THP-1-derived macrophages. Journal of Immunology Research, 2021, 8832586. [CrossRef]
  • 34. Romashkan, S., Chang, H., Hadley, E.C. (2021). National institute on aging workshop: Repurposing drugs or dietary supplements for their senolytic or senomorphic effects: Considerations for clinical trials. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 76(6), 1144-1152. [CrossRef]
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Farmakoloji ve Terapötikler, Tıbbi Farmakoloji
Bölüm Araştırma Makalesi
Yazarlar

Yaprak Dilber Şimay Demir 0000-0002-8248-0268

Senem Akgül 0009-0002-1432-8114

Erken Görünüm Tarihi 4 Mayıs 2025
Yayımlanma Tarihi 19 Mayıs 2025
Gönderilme Tarihi 21 Mart 2024
Kabul Tarihi 21 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 49 Sayı: 2

Kaynak Göster

APA Şimay Demir, Y. D., & Akgül, S. (2025). YENİ BİR SENOMORFİK İLAÇ ADAYI OLARAK HİDROKLOROTİYAZİD. Journal of Faculty of Pharmacy of Ankara University, 49(2), 309-319. https://doi.org/10.33483/jfpau.1456430
AMA Şimay Demir YD, Akgül S. YENİ BİR SENOMORFİK İLAÇ ADAYI OLARAK HİDROKLOROTİYAZİD. Ankara Ecz. Fak. Derg. Mayıs 2025;49(2):309-319. doi:10.33483/jfpau.1456430
Chicago Şimay Demir, Yaprak Dilber, ve Senem Akgül. “YENİ BİR SENOMORFİK İLAÇ ADAYI OLARAK HİDROKLOROTİYAZİD”. Journal of Faculty of Pharmacy of Ankara University 49, sy. 2 (Mayıs 2025): 309-19. https://doi.org/10.33483/jfpau.1456430.
EndNote Şimay Demir YD, Akgül S (01 Mayıs 2025) YENİ BİR SENOMORFİK İLAÇ ADAYI OLARAK HİDROKLOROTİYAZİD. Journal of Faculty of Pharmacy of Ankara University 49 2 309–319.
IEEE Y. D. Şimay Demir ve S. Akgül, “YENİ BİR SENOMORFİK İLAÇ ADAYI OLARAK HİDROKLOROTİYAZİD”, Ankara Ecz. Fak. Derg., c. 49, sy. 2, ss. 309–319, 2025, doi: 10.33483/jfpau.1456430.
ISNAD Şimay Demir, Yaprak Dilber - Akgül, Senem. “YENİ BİR SENOMORFİK İLAÇ ADAYI OLARAK HİDROKLOROTİYAZİD”. Journal of Faculty of Pharmacy of Ankara University 49/2 (Mayıs 2025), 309-319. https://doi.org/10.33483/jfpau.1456430.
JAMA Şimay Demir YD, Akgül S. YENİ BİR SENOMORFİK İLAÇ ADAYI OLARAK HİDROKLOROTİYAZİD. Ankara Ecz. Fak. Derg. 2025;49:309–319.
MLA Şimay Demir, Yaprak Dilber ve Senem Akgül. “YENİ BİR SENOMORFİK İLAÇ ADAYI OLARAK HİDROKLOROTİYAZİD”. Journal of Faculty of Pharmacy of Ankara University, c. 49, sy. 2, 2025, ss. 309-1, doi:10.33483/jfpau.1456430.
Vancouver Şimay Demir YD, Akgül S. YENİ BİR SENOMORFİK İLAÇ ADAYI OLARAK HİDROKLOROTİYAZİD. Ankara Ecz. Fak. Derg. 2025;49(2):309-1.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.