Araştırma Makalesi
BibTex RIS Kaynak Göster

MEYVELERDEN ŞİFAYA: PRUNUS CERASIFERA, MALUS SYLVESTRIS VE CORNUS MAS TÜRLERİNDEN ELDE EDİLEN UÇUCU YAĞLAR, YAĞ ASİTLERİ VE SU EKSTRELERİNİN LC-MS VE GC-MS YÖNTEMLERİYLE TERAPÖTİK POTANSİYELLERİNİN ANALİZİ

Yıl 2025, Cilt: 49 Sayı: 2, 402 - 424, 19.05.2025
https://doi.org/10.33483/jfpau.1562768

Öz

Amaç: Prunus cerasifera, Malus sylvestris ve Cornus mas'ın uçucu yağları, yağ asitleri ve sulu ekstrelerinin kimyasal bileşimi ve biyoaktif özellikleri araştırılmıştır.
Gereç ve Yöntem: P. cerasifera, M. sylvestris ve C. mas'ın antidiyabetik, antimikrobiyal, antikolinesteraz ve antioksidan aktiviteleri rapor edilmiştir. Ayrıca bazı sekonder metabolitlerin kantitatif tayini LC-MS/MS ile analiz edilmiştir. Uçucu yağların kimyasal bileşimi de GC-MS ile araştırılmıştır.
Sonuç ve Tartışma: Yağların ana bileşikleri P. cerasifera'da oleik asit (%77.1), M. sylvestris meyvelerinde palmitik asit (%32.5) ve C. mas tohumlarında linoleik asit (%43.2) olarak bulunmuştur. Benzaldehit (%70.1), nonakozan (%30.4), (E,E)-2,4-dekadienal (%43.3) sırasıyla P. cerasifera, M. sylvestris meyveleri ve C. mas tohum uçucu yağlarının ana bileşikleri olarak bulunmuştur. Kinik asit, 11262.2996 ila 18179.6260 ng/ml arasında değişen tüm ekstrelerde en çok bulunan bileşik olmuştur. C. mas yağı Candida albicans ve C. parapsilosis türlerine karşı MIC =625-1250 µg/ml ile antimikrobiyal aktivite göstermiştir. P. cerasifera, C. mas ve M. sylvestris, değişen derecelerde etki gücüne sahip α-glukozidaz inhibitörleri olarak potansiyel taşımaktadır. Özellikle <10 ve 399 µg/ml olan C. mas ve M. sylvestris örneklerinde IC50 değerleri sulu ekstrelerinin etkinliğini daha da vurgulamaktadır.

Kaynakça

  • 1. Rahati, S., Shahraki, M., Arjomand, G., Shahraki, T. (2014). Food Pattern, lifestyle and diabetes mellitus. International Journal of High Risk Behaviors & Addiction, 3(1), e8725. [CrossRef]
  • 2. Srinivasan, K. (2005). Plant foods in the management of diabetes mellitus: Spices as beneficial antidiabetic food adjuncts. International Journal of Food Sciences and Nutrition, 56(6), 399-414. [CrossRef]
  • 3. Montonen, J., Järvinen, R., Heliövaara, M., Reunanen, A., Aromaa, A., Knekt, P. (2005). Food consumption and the incidence of type II diabetes mellitus. European Journal of Clinical Nutrition, 59(3), 441-448. [CrossRef]
  • 4. Chapman, C.D., Schiöth, H.B., Grillo, C.A., Benedict, C. (2018). Intranasal insulin in Alzheimer’s Disease: Food for thought. Neuropharmacology, 136(Pt B), 196-201. [CrossRef]
  • 5. Otaegui-Arrazola, A., Amiano, P., Elbusto, A., Urdaneta, E., Martínez-Lage, P. (2014). Diet, cognition, and Alzheimer’s Disease: Food for thought. European Journal of Nutrition, 53(1), 1-23. [CrossRef]
  • 6. Tayeb, H.O., Yang, H.D., Price, B.H., & Tarazi, F.I. (2012). Pharmacotherapies for Alzheimer's Disease: Beyond cholinesterase inhibitors. Pharmacology & Therapeutics, 134(1), 8-25.
  • 7. Khan, M.S.H., Hegde, V. (2020). Obesity and diabetes mediated chronic inflammation: A potential biomarker in Alzheimer’s Disease. Journal of Personalized Medicine, 10(2). [CrossRef]
  • 8. Maher, P.A., Schubert, D.R. (2009). Metabolic links between diabetes and Alzheimer’s Disease. Expert Review of Neurotherapeutics, 9(5), 617-630. [CrossRef]
  • 9. Stojiljković, D., Arsić, I., Tadić, V. (2016). Extracts of wild apple fruit (Malus sylvestris (L.) Mill., Rosaceae) as a source of antioxidant substances for use in production of nutraceuticals and cosmeceuticals. Industrial Crops and Products, 80, 165-176. [CrossRef]
  • 10. Miklossy, J., & McGeer, P.L. (2016). Common mechanisms involved in Alzheimer’s Disease and type 2 diabetes: A key role of chronic bacterial infection and inflammation. Aging (Albany NY), 8(4), 575.
  • 11. Celik, F., Gundogdu, M., Alp, S., Muradoglu, F., Gecer, M., Canan, I. (2017). Determination of phenolic compounds, antioxidant capacity and organic acids contents of Prunus domestica L., Prunus cerasifera Ehrh. And Prunus spinosa L. Fruits by HPLC. Acta Chromatographica, 29(4), 507-510. [CrossRef]
  • 12. Horvath, A., Christmann, H., Laigret, F. (2008). Genetic diversity and relationships among Prunus cerasifera (cherry plum) clones. Botany, 86(11), 1311-1318. [CrossRef]
  • 13. Szczepaniak, O., Kobus-Cisowska, J., Kusek, W., Przeor, M. (2019). Functional properties of Cornelian cherry (Cornus mas L.): A comprehensive review. European Food Research and Technology, 245(10) 2071-2087. [CrossRef]
  • 14. Pawlowska, A., Braca, A. (2010). Quali-quantitative analysis of flavonoids of Cornus mas L. (Cornaceae) fruits. Food Chemistry, 119(3), 1257-1261. [CrossRef]
  • 15. Tardío, J., Arnal Olivares, A., Lázaro, A. (2020). Ethnobotany of the crab apple tree (Malus sylvestris (L.) Mill., Rosaceae) in Spain. Genetic Resources and Crop Evolution, 68(2), 795-808. [CrossRef]
  • 16. Bhat, R., Mestha, S., Nagesh, S., Shanbhag, P., Veigas, G., Kumar, R. (2022). An investigation of ant-inflammatory activity of aqueous extract of Malus sylvestris fruits in experimental animals. International Journal of Pharmaceutical Sciences Review and Research, 9, 606-610. [CrossRef]
  • 17. Pereira, M.G., Hamerski, F., Andrade, E.F., Scheer, A.D.P., Corazza, M.L. (2017). Assessment of subcritical propane, ultrasound-assisted and Soxhlet extraction of oil from sweet passion fruit (Passiflora alata Curtis) seeds. The Journal of Supercritical Fluids, 128, 338-348. [CrossRef]
  • 18. Karakaya, S., Özbek, H., Gözcü, S., Güvenalp, Z., Yuca, H., Duman, H., Kiliç, C.S. (2018). α-Amylase and α-glucosidase inhibitory activities of the extracts and constituents of Ferulago blancheana, F. pachyloba and F. trachycarpa roots. Bangladesh Journal of Pharmacology, 13(1), 35-40. [CrossRef]
  • 19. Karakaya, S., Yuca, H., Yılmaz, G., Aydın, B., Tekman, E., Eksi, G., Bona, M., Goger, G., Karadayı, M., Gulsahin, Y., Ozturk, G., Demirci, B., Guvenalp, Z. (2023). Phytochemical screening, biological evaluation, anatomical, and morphological investigation of Ferula tingitana L. (Apiaceae). Protoplasma, 260(6), 1581-1601. [CrossRef]
  • 20. Ayas, N., Ertan, A., Demirci, B., Baser, K.H.C. (2004). Fatty acid composition of seed oils of twelve Salvia Species growing in Turkey. Chemistry of Natural Compounds, 40, 218-221. [CrossRef]
  • 21. Bachhawat, J.A., Shihabudeen, M.S., Thirumurugan, K. (2011). Screening of fifteen Indian ayurvedic plants for alpha-glucosidase inhibitory activity and enzyme kinetics. International Journal of Pharmacy and Pharmaceutical Science, 3(4), 267-274.
  • 22. Yuca, H., Ozbek, H., Demirezer, L.O., Kasil, H.G., Guvenalp, Z. (2021). trans-Tiliroside: A potent α-glucosidase inhibitor from the leaves of Elaeagnus angustifolia L. Phytochemistry, 188, 112795. [CrossRef]
  • 23. Nampoothiri, S.V., Prathapan, A., Cherian, O.L., Raghu, K.G., Venugopalan, V.V., Sundaresan, A. (2011). In vitro antioxidant and inhibitory potential of Terminalia bellerica and Emblica officinalis fruits against LDL oxidation and key enzymes linked to type 2 diabetes. Food and Chemical Toxicology, 49(1), 125-131. [CrossRef]
  • 24. Ingkaninan, K., de Best, C.M., van der Heijden, R., Hofte, A.J.P., Karabatak, B., Irth, H., Tjaden, U.R., Van der Greef, J., Verpoorte, R. (2000). High-performance liquid chromatography with on-line coupled UV, mass spectrometric and biochemical detection for identification of acetylcholinesterase inhibitors from natural products. Journal of Chromatography A, 872(1), 61-73. [CrossRef]
  • 25. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231-1237. [CrossRef]
  • 26. Blois, M.S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200.
  • 27. Folin, O., Denis, W. (1912). On phosphotungstic-phosphomolybdic compounds as color reagents. Journal of Biological Chemistry, 12(2), 239-243. [CrossRef]
  • 28. Slinkard, K., Singleton, V.L. (1977). Total phenol analysis: Automation and comparison with manual methods. American Journal of Enology and Viticulture, 28(1), 49-55. [CrossRef]
  • 29. Makkar, H.P.S. (2003). Measurement of Total Phenolics and Tannins Using Folin-Ciocalteu Method. In H.P.S. Makkar (Ed.), Quantification of Tannins in Tree and Shrub Foliage: A Laboratory Manual (ss. 49-51). Springer Netherlands. [CrossRef]
  • 30. Matthäus, B., Ozcan, M. (2009). Fatty acids and tocopherol contents of some Prunus spp. Kernel oils. Journal of Food Lipids, 16, 187-199. [CrossRef]
  • 31. Alara, O.R., Abdurahman, N.H., Ukaegbu, C.I. (2021). Extraction of phenolic compounds: A review. Current research in food science, 4, 200-214. [CrossRef]
  • 32. Jakopič, J., Veberič, R., Štampar, F. (2009). Extraction of phenolic compounds from green walnut fruits in different solvents. Acta Agriculturae Slovenica, 93(1), 11-15. [CrossRef]
  • 33. Jakovljević Kovač, M., Moslavac, T., Bilic, M., Aladic, K., Bakula, F., Jokic, S. (2018). Supercritical CO2 extraction of oil from rose hips (Rosa canina L.) and cornelian cherry (Cornus mas L.) seeds. Croatian Journal of Food Science and Technology, 10, 197-205. [CrossRef]
  • 34. Nafis, A., Kasrati, A., Jamali, C.A., Custódio, L., Vitalini, S., Iriti, M., Hassani, L. (2020). A comparative study of the in vitro antimicrobial and synergistic effect of essential oils from Laurus nobilis L. and Prunus armeniaca L. from morocco with antimicrobial drugs: New approach for health promoting products. Antibiotics (Basel, Switzerland), 9(4), 140. [CrossRef]
  • 35. Verma, R.S., Padalia, R.C., Singh, V.R., Goswami, P., Chauhan, A., Bhukya, B. (2017). Natural benzaldehyde from Prunus persica (L.) Batsch. International Journal of Food Properties, 20(sup2), 1259-1263. [CrossRef]
  • 36. Walia, M., Mann, T.S., Kumar, D., Agnihotri, V.K., Singh, B. (2012). Chemical composition and in vitro cytotoxic activity of essential oil of leaves of Malus domestica growing in Western Himalaya (India). Evidence-based Complementary and Alternative Medicine: eCAM, 2012, 649727. [CrossRef]
  • 37. Mustafa, B., Nebija, D., Hajdari, A. (2018). Evaluation of essential oil composition, total phenolics, total flavonoids and antioxidant activity of Malus sylvestris (L.) Mill. Fruits. Research, 23, 71-85.
  • 38. Miyazawa, M., Kameoka, H. (1989). Volatile flavor components of corni fructus (Cornus officinalis Sieb. Et Zucc.). Agricultural and Biological Chemistry, 53(12), 3337-3340. [CrossRef]
  • 39. Krivoruchko, E.V., Samoilova, V.A., Kovalev, V.N. (2011). Constituent composition of essential oil from Cornus mas flowers. Chemistry of Natural Compounds, 47(4), 646-647. [CrossRef]
  • 40. Arya, A., Al-Obaidi, M.M.J., Shahid, N., Bin Noordin, M.I., Looi, C.Y., Wong, W.F., Khaing, S.L., Mustafa, M.R. (2014). Synergistic effect of quercetin and quinic acid by alleviating structural degeneration in the liver, kidney and pancreas tissues of STZ-induced diabetic rats: A mechanistic study. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 71, 183-196. [CrossRef]
  • 41. Hur, J.Y., Soh, Y., Kim, B.H., Suk, K., Sohn, N.W., Kim, H.C., Kwon, H.C., Lee, K.R., Kim, S.Y. (2001). Neuroprotective and neurotrophic effects of quinic acids from Aster scaber in PC12 cells. Biological & Pharmaceutical Bulletin, 24(8), 921-924. [CrossRef]
  • 42. Gedük, A.Ş., & Atsız, S. (2022). LC-MS/MS phenolic composition of peach (Prunus persica (L.) Batsch) extracts and an evaluation of their antidiabetic, antioxidant, and antibacterial activities. South African Journal of Botany, 147, 636-645. [CrossRef]
  • 43. Tyagi, K., Lui, A.C., Zhang, S., & Peck, G.M. (2025). Folin-Ciocâlteu, RP-HPLC (reverse phase-high performance liquid chromatography), and LC-MS (liquid chromatography-mass spectrometry) provide complementary information for describing cider (Malus spp.) apple juice. Journal of Food Composition and Analysis, 137, 106844. [CrossRef]
  • 44. Jang, M., Kim, Y.J., Min, J.W., Yang, D.C. (2009). Optimization of extraction method for the quantitative analysis of gallic acid from Cornus officinallis. Korean Journal of Food Science and Technology, 41(5), 498-502.
  • 45. Ceylan, O., Sahin, M.D., Avaz, S. (2013). Antibacterial activity of Corylus colurna L. (Betulaceae) and Prunus divaricata ledep. subsp. divaricata (Rosaceae) from Usak, Turkey. Bulgarian Journal of Agricultural Science, 19, 1204-1207.
  • 46. Comlekcioglu, N., Kocabaş, Y., Aygan, A. (2020). Determination of biochemical composition and antimicrobial activities of Prunus divaricata subsp. divaricata Ledeb. fruits collected from Kahramanmaraş. Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi, 46-56. [CrossRef]
  • 47. Gaffar, H., Hasan, Y., Aprilia, N. (2022). The effectiveness of rome beauty apple peel extract (Malus sylvestris Mill) on the growth of Salmonella Typhi. Open Access Macedonian Journal of Medical Sciences, 10, 848-853. [CrossRef]
  • 48. Putra, K., Setyowati, E., & Susilorini, T. (2016). Inhibition of Malus sylvestris Mill. peelextract using etanol solvent on the growth of Streptococcus agalactiae and Escherichia coli causing mastitis. TERNAK TROPIKA Journal of Tropical Animal Production, 17(1), 77-85. [CrossRef]
  • 49. Krzyściak, P., Krosniak, M., Gąstoł, M., Ochońska, D., Krzyściak, W. (2011). Antimicrobial activity of Cornelian cherry (Cornus mas L.). Postępy Fitoterapii, 227-231.
  • 50. Yigit, D. (2018). Antimicrobial and antioxidant evaluation of fruit extract from Cornus mas L. Aksaray University Journal of Science and Engineering, 2(1), 41-51. [CrossRef]
  • 51. Yuca, H., Demircan, H., Aydin, B., Önal, M., Tekman, E., Civaş, A., Nobarirezaeyeh, M., Göger, G., Karakaya, S., Güvenalp, Z. (2023). Comparison of some biological activities and catechin tannin contents of two Juniperus and Prunus species. Journal of Faculty of Pharmacy of Ankara University, 47(2), 650-666. [CrossRef]
  • 52. Popović, B.M., Blagojević, B., Kucharska, A.Z., Agić, D., Magazin, N., Milović, M., Serra, A.T. (2021). Exploring fruits from genus Prunus as a source of potential pharmaceutical agents-in vitro and in silico study. Food Chemistry, 358, 129812. [CrossRef]
  • 53. Shishehbor, F., Azemi, M.E., Zameni, D., Saki, A. (2016). Inhibitory effect of hydroalcoholic extracts of barberry, sour cherry and cornelian cherry on α-amylase and α-glucosidase activities. Int J Pharm Res Allied Sci, 5, 423-428.
  • 54. Dzydzan, O., Brodyak, I., Strugała-Danak, P., Strach, A., Kucharska, A.Z., Gabrielska, J., Sybirna, N. (2022). Biological activity of extracts of red and yellow fruits of Cornus mas L.-An in vitro evaluation of antioxidant activity, ınhibitory activity against α-glucosidase, acetylcholinesterase, and binding capacity to human serum albumin. Molecules (Basel, Switzerland), 27(7), 2244. [CrossRef]
  • 55. Oboh, G. (2021). Inhibition of α-amylase, α-glucosidase and oxidative stress by some common apple varieties. International Journal on Nutraceuticals, Functional Foods and Novel Foods. Nutrafoods, 15, 271-278. [CrossRef]
  • 56. Oskoueian, A., Haghighi, R., Ebrahimi, M., Oskoueian, E. (2012). Bioactive compounds, antioxidant, tyrosinase inhibition, xanthine oxidase inhibition, anticholinesterase and anti inflammatory activities of Prunus mahaleb L. Seed. Journal of Medicinal Plant Research, 6, 225-233. [CrossRef]
  • 57. Vahedi-Mazdabadi, Y., Karimpour-Razkenari, E., Akbarzadeh, T., Lotfian, H., Toushih, M., Roshanravan, N., Saeedi, M., Ostadrahimi, A. (2020). Anti-cholinesterase and neuroprotective activities of sweet and bitter apricot kernels (Prunus armeniaca L.). Iranian Journal of Pharmaceutical Research: IJPR, 19(4), 216-224. [CrossRef]
  • 58. Sohretoglu, D., Barut, B. (2020). Total phenolic content, cyclooxygenases, glucosidase, acetylcholinesterase, tyrosinase inhibitory and DPPH radical scavenging effects of Cornus sanguinea leaves and fruits. Journal of Research in Pharmacy, 24, 623-631. [CrossRef]
  • 59. Banerjee, A., Hegde, K.M.V. (2021). A study of fresh fruit juice of (Hybrid Perentage)-Malus domestica X M. Sylvestris against experimentally induced Alzheimer’s Disease in mice. International Journal of Pharmaceutical Sciences Review and Research, 67, 10-16. [CrossRef]
  • 60. Moldovan, B., Filip, A., Clichici, S., Suharoschi, R., Bolfa, P., David, L. (2016). Antioxidant activity of Cornelian cherry (Cornus mas L.) fruits extract and the in vivo evaluation of its anti-inflammatory effects. Journal of Functional Foods, 26, 77-87. [CrossRef]
  • 61. Serteser, A., Kargıoğlu, M., Gok, V., Bagci, Y., Ozcan, M., Arslan, D. (2009). Antioxidant properties of some plants growing wild in Turkey. Grasas y Aceites, 60(2), 147-154. [CrossRef]
  • 62. Pantelidis, G.E., Vasilakakis, M., Manganaris, G.A., Diamantidis, Gr. (2007). Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chemistry, 102(3), 777-783. [CrossRef]
  • 63. Yilmaz, K.U., Ercisli, S., Zengin, Y., Sengul, M., Kafkas, E.Y. (2009). Preliminary characterisation of cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties. Food Chemistry, 114(2), 408-412. [CrossRef]
  • 64. Hassanpour, H., Yousef, H., Jafar, H., Mohammad, A. (2011). Antioxidant capacity and phytochemical properties of cornelian cherry (Cornus mas L.) genotypes in Iran. Scientia Horticulturae, 129(3), 459-463. [CrossRef]
  • 65. Stoenescu, A.-M., Trandafir, I., Cosmulescu, S. (2022). Determination of phenolic compounds using HPLC-UV method in wild fruit species. Horticulturae, 8(2), 84. [CrossRef]

FRUITFUL REMEDIES: ANALYZING THERAPEUTIC POTENTIALS IN ESSENTIAL AND FATTY OILS, AND AQUEOUS EXTRACTS FROM PRUNUS CERASIFERA, MALUS SYLVESTRIS, AND CORNUS MAS USING LC-MS AND GC-MS

Yıl 2025, Cilt: 49 Sayı: 2, 402 - 424, 19.05.2025
https://doi.org/10.33483/jfpau.1562768

Öz

Objective: The chemical composition and bioactive properties of essential oils, fatty oils and aqueous extracts of Prunus cerasifera, Malus sylvestris and Cornus mas were investigated.
Material and Method: Antidiabetic, antimicrobial, anticholinesterase and antioxidant activities of P. cerasifera, M. sylvestris and C. mas were reported. The quantitative determination of some secondary metabolites was also analysed by LC-MS/MS. The chemical composition of the essential oils was also investigated by GC-MS.
Result and Discussion: Fatty oils’ major compounds were oleic acid (77.1%) in P. cerasifera, palmitic acid (32.5%) in M. sylvestris fruits, and linoleic acid (43.2%) in C. mas seeds. Benzaldehyde (70.1%), nonacosane (30.4%), (E,E)-2,4-Decadienal (43.3%) were found as major compounds of P. cerasifera, M. sylvestris fruits, and C. mas seed essential oils, respectively. Quinic acid was predominant compound in all extracts, ranging from 11262.2996 to 18179.6260 ng/ml. C. mas fatty oil was showed antimicrobial activity against Candida albicans and C. parapsilosis with MIC =625-1250 µg/ml. P. cerasifera, C. mas, and M. sylvestris hold potential as α-glucosidase inhibitors, with varying degrees of potency. IC50 values further underscore effectiveness of aqueous extracts, especially in cases of C. mas and M. sylvestris with <10 and 399 µg/ml.

Kaynakça

  • 1. Rahati, S., Shahraki, M., Arjomand, G., Shahraki, T. (2014). Food Pattern, lifestyle and diabetes mellitus. International Journal of High Risk Behaviors & Addiction, 3(1), e8725. [CrossRef]
  • 2. Srinivasan, K. (2005). Plant foods in the management of diabetes mellitus: Spices as beneficial antidiabetic food adjuncts. International Journal of Food Sciences and Nutrition, 56(6), 399-414. [CrossRef]
  • 3. Montonen, J., Järvinen, R., Heliövaara, M., Reunanen, A., Aromaa, A., Knekt, P. (2005). Food consumption and the incidence of type II diabetes mellitus. European Journal of Clinical Nutrition, 59(3), 441-448. [CrossRef]
  • 4. Chapman, C.D., Schiöth, H.B., Grillo, C.A., Benedict, C. (2018). Intranasal insulin in Alzheimer’s Disease: Food for thought. Neuropharmacology, 136(Pt B), 196-201. [CrossRef]
  • 5. Otaegui-Arrazola, A., Amiano, P., Elbusto, A., Urdaneta, E., Martínez-Lage, P. (2014). Diet, cognition, and Alzheimer’s Disease: Food for thought. European Journal of Nutrition, 53(1), 1-23. [CrossRef]
  • 6. Tayeb, H.O., Yang, H.D., Price, B.H., & Tarazi, F.I. (2012). Pharmacotherapies for Alzheimer's Disease: Beyond cholinesterase inhibitors. Pharmacology & Therapeutics, 134(1), 8-25.
  • 7. Khan, M.S.H., Hegde, V. (2020). Obesity and diabetes mediated chronic inflammation: A potential biomarker in Alzheimer’s Disease. Journal of Personalized Medicine, 10(2). [CrossRef]
  • 8. Maher, P.A., Schubert, D.R. (2009). Metabolic links between diabetes and Alzheimer’s Disease. Expert Review of Neurotherapeutics, 9(5), 617-630. [CrossRef]
  • 9. Stojiljković, D., Arsić, I., Tadić, V. (2016). Extracts of wild apple fruit (Malus sylvestris (L.) Mill., Rosaceae) as a source of antioxidant substances for use in production of nutraceuticals and cosmeceuticals. Industrial Crops and Products, 80, 165-176. [CrossRef]
  • 10. Miklossy, J., & McGeer, P.L. (2016). Common mechanisms involved in Alzheimer’s Disease and type 2 diabetes: A key role of chronic bacterial infection and inflammation. Aging (Albany NY), 8(4), 575.
  • 11. Celik, F., Gundogdu, M., Alp, S., Muradoglu, F., Gecer, M., Canan, I. (2017). Determination of phenolic compounds, antioxidant capacity and organic acids contents of Prunus domestica L., Prunus cerasifera Ehrh. And Prunus spinosa L. Fruits by HPLC. Acta Chromatographica, 29(4), 507-510. [CrossRef]
  • 12. Horvath, A., Christmann, H., Laigret, F. (2008). Genetic diversity and relationships among Prunus cerasifera (cherry plum) clones. Botany, 86(11), 1311-1318. [CrossRef]
  • 13. Szczepaniak, O., Kobus-Cisowska, J., Kusek, W., Przeor, M. (2019). Functional properties of Cornelian cherry (Cornus mas L.): A comprehensive review. European Food Research and Technology, 245(10) 2071-2087. [CrossRef]
  • 14. Pawlowska, A., Braca, A. (2010). Quali-quantitative analysis of flavonoids of Cornus mas L. (Cornaceae) fruits. Food Chemistry, 119(3), 1257-1261. [CrossRef]
  • 15. Tardío, J., Arnal Olivares, A., Lázaro, A. (2020). Ethnobotany of the crab apple tree (Malus sylvestris (L.) Mill., Rosaceae) in Spain. Genetic Resources and Crop Evolution, 68(2), 795-808. [CrossRef]
  • 16. Bhat, R., Mestha, S., Nagesh, S., Shanbhag, P., Veigas, G., Kumar, R. (2022). An investigation of ant-inflammatory activity of aqueous extract of Malus sylvestris fruits in experimental animals. International Journal of Pharmaceutical Sciences Review and Research, 9, 606-610. [CrossRef]
  • 17. Pereira, M.G., Hamerski, F., Andrade, E.F., Scheer, A.D.P., Corazza, M.L. (2017). Assessment of subcritical propane, ultrasound-assisted and Soxhlet extraction of oil from sweet passion fruit (Passiflora alata Curtis) seeds. The Journal of Supercritical Fluids, 128, 338-348. [CrossRef]
  • 18. Karakaya, S., Özbek, H., Gözcü, S., Güvenalp, Z., Yuca, H., Duman, H., Kiliç, C.S. (2018). α-Amylase and α-glucosidase inhibitory activities of the extracts and constituents of Ferulago blancheana, F. pachyloba and F. trachycarpa roots. Bangladesh Journal of Pharmacology, 13(1), 35-40. [CrossRef]
  • 19. Karakaya, S., Yuca, H., Yılmaz, G., Aydın, B., Tekman, E., Eksi, G., Bona, M., Goger, G., Karadayı, M., Gulsahin, Y., Ozturk, G., Demirci, B., Guvenalp, Z. (2023). Phytochemical screening, biological evaluation, anatomical, and morphological investigation of Ferula tingitana L. (Apiaceae). Protoplasma, 260(6), 1581-1601. [CrossRef]
  • 20. Ayas, N., Ertan, A., Demirci, B., Baser, K.H.C. (2004). Fatty acid composition of seed oils of twelve Salvia Species growing in Turkey. Chemistry of Natural Compounds, 40, 218-221. [CrossRef]
  • 21. Bachhawat, J.A., Shihabudeen, M.S., Thirumurugan, K. (2011). Screening of fifteen Indian ayurvedic plants for alpha-glucosidase inhibitory activity and enzyme kinetics. International Journal of Pharmacy and Pharmaceutical Science, 3(4), 267-274.
  • 22. Yuca, H., Ozbek, H., Demirezer, L.O., Kasil, H.G., Guvenalp, Z. (2021). trans-Tiliroside: A potent α-glucosidase inhibitor from the leaves of Elaeagnus angustifolia L. Phytochemistry, 188, 112795. [CrossRef]
  • 23. Nampoothiri, S.V., Prathapan, A., Cherian, O.L., Raghu, K.G., Venugopalan, V.V., Sundaresan, A. (2011). In vitro antioxidant and inhibitory potential of Terminalia bellerica and Emblica officinalis fruits against LDL oxidation and key enzymes linked to type 2 diabetes. Food and Chemical Toxicology, 49(1), 125-131. [CrossRef]
  • 24. Ingkaninan, K., de Best, C.M., van der Heijden, R., Hofte, A.J.P., Karabatak, B., Irth, H., Tjaden, U.R., Van der Greef, J., Verpoorte, R. (2000). High-performance liquid chromatography with on-line coupled UV, mass spectrometric and biochemical detection for identification of acetylcholinesterase inhibitors from natural products. Journal of Chromatography A, 872(1), 61-73. [CrossRef]
  • 25. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231-1237. [CrossRef]
  • 26. Blois, M.S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200.
  • 27. Folin, O., Denis, W. (1912). On phosphotungstic-phosphomolybdic compounds as color reagents. Journal of Biological Chemistry, 12(2), 239-243. [CrossRef]
  • 28. Slinkard, K., Singleton, V.L. (1977). Total phenol analysis: Automation and comparison with manual methods. American Journal of Enology and Viticulture, 28(1), 49-55. [CrossRef]
  • 29. Makkar, H.P.S. (2003). Measurement of Total Phenolics and Tannins Using Folin-Ciocalteu Method. In H.P.S. Makkar (Ed.), Quantification of Tannins in Tree and Shrub Foliage: A Laboratory Manual (ss. 49-51). Springer Netherlands. [CrossRef]
  • 30. Matthäus, B., Ozcan, M. (2009). Fatty acids and tocopherol contents of some Prunus spp. Kernel oils. Journal of Food Lipids, 16, 187-199. [CrossRef]
  • 31. Alara, O.R., Abdurahman, N.H., Ukaegbu, C.I. (2021). Extraction of phenolic compounds: A review. Current research in food science, 4, 200-214. [CrossRef]
  • 32. Jakopič, J., Veberič, R., Štampar, F. (2009). Extraction of phenolic compounds from green walnut fruits in different solvents. Acta Agriculturae Slovenica, 93(1), 11-15. [CrossRef]
  • 33. Jakovljević Kovač, M., Moslavac, T., Bilic, M., Aladic, K., Bakula, F., Jokic, S. (2018). Supercritical CO2 extraction of oil from rose hips (Rosa canina L.) and cornelian cherry (Cornus mas L.) seeds. Croatian Journal of Food Science and Technology, 10, 197-205. [CrossRef]
  • 34. Nafis, A., Kasrati, A., Jamali, C.A., Custódio, L., Vitalini, S., Iriti, M., Hassani, L. (2020). A comparative study of the in vitro antimicrobial and synergistic effect of essential oils from Laurus nobilis L. and Prunus armeniaca L. from morocco with antimicrobial drugs: New approach for health promoting products. Antibiotics (Basel, Switzerland), 9(4), 140. [CrossRef]
  • 35. Verma, R.S., Padalia, R.C., Singh, V.R., Goswami, P., Chauhan, A., Bhukya, B. (2017). Natural benzaldehyde from Prunus persica (L.) Batsch. International Journal of Food Properties, 20(sup2), 1259-1263. [CrossRef]
  • 36. Walia, M., Mann, T.S., Kumar, D., Agnihotri, V.K., Singh, B. (2012). Chemical composition and in vitro cytotoxic activity of essential oil of leaves of Malus domestica growing in Western Himalaya (India). Evidence-based Complementary and Alternative Medicine: eCAM, 2012, 649727. [CrossRef]
  • 37. Mustafa, B., Nebija, D., Hajdari, A. (2018). Evaluation of essential oil composition, total phenolics, total flavonoids and antioxidant activity of Malus sylvestris (L.) Mill. Fruits. Research, 23, 71-85.
  • 38. Miyazawa, M., Kameoka, H. (1989). Volatile flavor components of corni fructus (Cornus officinalis Sieb. Et Zucc.). Agricultural and Biological Chemistry, 53(12), 3337-3340. [CrossRef]
  • 39. Krivoruchko, E.V., Samoilova, V.A., Kovalev, V.N. (2011). Constituent composition of essential oil from Cornus mas flowers. Chemistry of Natural Compounds, 47(4), 646-647. [CrossRef]
  • 40. Arya, A., Al-Obaidi, M.M.J., Shahid, N., Bin Noordin, M.I., Looi, C.Y., Wong, W.F., Khaing, S.L., Mustafa, M.R. (2014). Synergistic effect of quercetin and quinic acid by alleviating structural degeneration in the liver, kidney and pancreas tissues of STZ-induced diabetic rats: A mechanistic study. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 71, 183-196. [CrossRef]
  • 41. Hur, J.Y., Soh, Y., Kim, B.H., Suk, K., Sohn, N.W., Kim, H.C., Kwon, H.C., Lee, K.R., Kim, S.Y. (2001). Neuroprotective and neurotrophic effects of quinic acids from Aster scaber in PC12 cells. Biological & Pharmaceutical Bulletin, 24(8), 921-924. [CrossRef]
  • 42. Gedük, A.Ş., & Atsız, S. (2022). LC-MS/MS phenolic composition of peach (Prunus persica (L.) Batsch) extracts and an evaluation of their antidiabetic, antioxidant, and antibacterial activities. South African Journal of Botany, 147, 636-645. [CrossRef]
  • 43. Tyagi, K., Lui, A.C., Zhang, S., & Peck, G.M. (2025). Folin-Ciocâlteu, RP-HPLC (reverse phase-high performance liquid chromatography), and LC-MS (liquid chromatography-mass spectrometry) provide complementary information for describing cider (Malus spp.) apple juice. Journal of Food Composition and Analysis, 137, 106844. [CrossRef]
  • 44. Jang, M., Kim, Y.J., Min, J.W., Yang, D.C. (2009). Optimization of extraction method for the quantitative analysis of gallic acid from Cornus officinallis. Korean Journal of Food Science and Technology, 41(5), 498-502.
  • 45. Ceylan, O., Sahin, M.D., Avaz, S. (2013). Antibacterial activity of Corylus colurna L. (Betulaceae) and Prunus divaricata ledep. subsp. divaricata (Rosaceae) from Usak, Turkey. Bulgarian Journal of Agricultural Science, 19, 1204-1207.
  • 46. Comlekcioglu, N., Kocabaş, Y., Aygan, A. (2020). Determination of biochemical composition and antimicrobial activities of Prunus divaricata subsp. divaricata Ledeb. fruits collected from Kahramanmaraş. Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi, 46-56. [CrossRef]
  • 47. Gaffar, H., Hasan, Y., Aprilia, N. (2022). The effectiveness of rome beauty apple peel extract (Malus sylvestris Mill) on the growth of Salmonella Typhi. Open Access Macedonian Journal of Medical Sciences, 10, 848-853. [CrossRef]
  • 48. Putra, K., Setyowati, E., & Susilorini, T. (2016). Inhibition of Malus sylvestris Mill. peelextract using etanol solvent on the growth of Streptococcus agalactiae and Escherichia coli causing mastitis. TERNAK TROPIKA Journal of Tropical Animal Production, 17(1), 77-85. [CrossRef]
  • 49. Krzyściak, P., Krosniak, M., Gąstoł, M., Ochońska, D., Krzyściak, W. (2011). Antimicrobial activity of Cornelian cherry (Cornus mas L.). Postępy Fitoterapii, 227-231.
  • 50. Yigit, D. (2018). Antimicrobial and antioxidant evaluation of fruit extract from Cornus mas L. Aksaray University Journal of Science and Engineering, 2(1), 41-51. [CrossRef]
  • 51. Yuca, H., Demircan, H., Aydin, B., Önal, M., Tekman, E., Civaş, A., Nobarirezaeyeh, M., Göger, G., Karakaya, S., Güvenalp, Z. (2023). Comparison of some biological activities and catechin tannin contents of two Juniperus and Prunus species. Journal of Faculty of Pharmacy of Ankara University, 47(2), 650-666. [CrossRef]
  • 52. Popović, B.M., Blagojević, B., Kucharska, A.Z., Agić, D., Magazin, N., Milović, M., Serra, A.T. (2021). Exploring fruits from genus Prunus as a source of potential pharmaceutical agents-in vitro and in silico study. Food Chemistry, 358, 129812. [CrossRef]
  • 53. Shishehbor, F., Azemi, M.E., Zameni, D., Saki, A. (2016). Inhibitory effect of hydroalcoholic extracts of barberry, sour cherry and cornelian cherry on α-amylase and α-glucosidase activities. Int J Pharm Res Allied Sci, 5, 423-428.
  • 54. Dzydzan, O., Brodyak, I., Strugała-Danak, P., Strach, A., Kucharska, A.Z., Gabrielska, J., Sybirna, N. (2022). Biological activity of extracts of red and yellow fruits of Cornus mas L.-An in vitro evaluation of antioxidant activity, ınhibitory activity against α-glucosidase, acetylcholinesterase, and binding capacity to human serum albumin. Molecules (Basel, Switzerland), 27(7), 2244. [CrossRef]
  • 55. Oboh, G. (2021). Inhibition of α-amylase, α-glucosidase and oxidative stress by some common apple varieties. International Journal on Nutraceuticals, Functional Foods and Novel Foods. Nutrafoods, 15, 271-278. [CrossRef]
  • 56. Oskoueian, A., Haghighi, R., Ebrahimi, M., Oskoueian, E. (2012). Bioactive compounds, antioxidant, tyrosinase inhibition, xanthine oxidase inhibition, anticholinesterase and anti inflammatory activities of Prunus mahaleb L. Seed. Journal of Medicinal Plant Research, 6, 225-233. [CrossRef]
  • 57. Vahedi-Mazdabadi, Y., Karimpour-Razkenari, E., Akbarzadeh, T., Lotfian, H., Toushih, M., Roshanravan, N., Saeedi, M., Ostadrahimi, A. (2020). Anti-cholinesterase and neuroprotective activities of sweet and bitter apricot kernels (Prunus armeniaca L.). Iranian Journal of Pharmaceutical Research: IJPR, 19(4), 216-224. [CrossRef]
  • 58. Sohretoglu, D., Barut, B. (2020). Total phenolic content, cyclooxygenases, glucosidase, acetylcholinesterase, tyrosinase inhibitory and DPPH radical scavenging effects of Cornus sanguinea leaves and fruits. Journal of Research in Pharmacy, 24, 623-631. [CrossRef]
  • 59. Banerjee, A., Hegde, K.M.V. (2021). A study of fresh fruit juice of (Hybrid Perentage)-Malus domestica X M. Sylvestris against experimentally induced Alzheimer’s Disease in mice. International Journal of Pharmaceutical Sciences Review and Research, 67, 10-16. [CrossRef]
  • 60. Moldovan, B., Filip, A., Clichici, S., Suharoschi, R., Bolfa, P., David, L. (2016). Antioxidant activity of Cornelian cherry (Cornus mas L.) fruits extract and the in vivo evaluation of its anti-inflammatory effects. Journal of Functional Foods, 26, 77-87. [CrossRef]
  • 61. Serteser, A., Kargıoğlu, M., Gok, V., Bagci, Y., Ozcan, M., Arslan, D. (2009). Antioxidant properties of some plants growing wild in Turkey. Grasas y Aceites, 60(2), 147-154. [CrossRef]
  • 62. Pantelidis, G.E., Vasilakakis, M., Manganaris, G.A., Diamantidis, Gr. (2007). Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chemistry, 102(3), 777-783. [CrossRef]
  • 63. Yilmaz, K.U., Ercisli, S., Zengin, Y., Sengul, M., Kafkas, E.Y. (2009). Preliminary characterisation of cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties. Food Chemistry, 114(2), 408-412. [CrossRef]
  • 64. Hassanpour, H., Yousef, H., Jafar, H., Mohammad, A. (2011). Antioxidant capacity and phytochemical properties of cornelian cherry (Cornus mas L.) genotypes in Iran. Scientia Horticulturae, 129(3), 459-463. [CrossRef]
  • 65. Stoenescu, A.-M., Trandafir, I., Cosmulescu, S. (2022). Determination of phenolic compounds using HPLC-UV method in wild fruit species. Horticulturae, 8(2), 84. [CrossRef]
Toplam 65 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Farmakognozi, Farmasotik Botanik
Bölüm Araştırma Makalesi
Yazarlar

Bilge Aydın 0000-0002-7712-7259

Hafize Yuca 0000-0002-0857-4776

Gözde Öztürk 0000-0002-3998-8859

Enes Tekman 0000-0002-1226-7218

Songül Karakaya 0000-0002-3268-721X

Gamze Göger 0000-0003-2978-5385

Mehmet Önal 0000-0003-1069-1012

Betül Demirci 0000-0003-2343-746X

Zuhal Güvenalp 0000-0002-8803-8147

Oksana Sytar 0000-0003-4219-9292

Erken Görünüm Tarihi 9 Mayıs 2025
Yayımlanma Tarihi 19 Mayıs 2025
Gönderilme Tarihi 7 Ekim 2024
Kabul Tarihi 3 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 49 Sayı: 2

Kaynak Göster

APA Aydın, B., Yuca, H., Öztürk, G., Tekman, E., vd. (2025). FRUITFUL REMEDIES: ANALYZING THERAPEUTIC POTENTIALS IN ESSENTIAL AND FATTY OILS, AND AQUEOUS EXTRACTS FROM PRUNUS CERASIFERA, MALUS SYLVESTRIS, AND CORNUS MAS USING LC-MS AND GC-MS. Journal of Faculty of Pharmacy of Ankara University, 49(2), 402-424. https://doi.org/10.33483/jfpau.1562768
AMA Aydın B, Yuca H, Öztürk G, Tekman E, Karakaya S, Göger G, Önal M, Demirci B, Güvenalp Z, Sytar O. FRUITFUL REMEDIES: ANALYZING THERAPEUTIC POTENTIALS IN ESSENTIAL AND FATTY OILS, AND AQUEOUS EXTRACTS FROM PRUNUS CERASIFERA, MALUS SYLVESTRIS, AND CORNUS MAS USING LC-MS AND GC-MS. Ankara Ecz. Fak. Derg. Mayıs 2025;49(2):402-424. doi:10.33483/jfpau.1562768
Chicago Aydın, Bilge, Hafize Yuca, Gözde Öztürk, Enes Tekman, Songül Karakaya, Gamze Göger, Mehmet Önal, Betül Demirci, Zuhal Güvenalp, ve Oksana Sytar. “FRUITFUL REMEDIES: ANALYZING THERAPEUTIC POTENTIALS IN ESSENTIAL AND FATTY OILS, AND AQUEOUS EXTRACTS FROM PRUNUS CERASIFERA, MALUS SYLVESTRIS, AND CORNUS MAS USING LC-MS AND GC-MS”. Journal of Faculty of Pharmacy of Ankara University 49, sy. 2 (Mayıs 2025): 402-24. https://doi.org/10.33483/jfpau.1562768.
EndNote Aydın B, Yuca H, Öztürk G, Tekman E, Karakaya S, Göger G, Önal M, Demirci B, Güvenalp Z, Sytar O (01 Mayıs 2025) FRUITFUL REMEDIES: ANALYZING THERAPEUTIC POTENTIALS IN ESSENTIAL AND FATTY OILS, AND AQUEOUS EXTRACTS FROM PRUNUS CERASIFERA, MALUS SYLVESTRIS, AND CORNUS MAS USING LC-MS AND GC-MS. Journal of Faculty of Pharmacy of Ankara University 49 2 402–424.
IEEE B. Aydın, “FRUITFUL REMEDIES: ANALYZING THERAPEUTIC POTENTIALS IN ESSENTIAL AND FATTY OILS, AND AQUEOUS EXTRACTS FROM PRUNUS CERASIFERA, MALUS SYLVESTRIS, AND CORNUS MAS USING LC-MS AND GC-MS”, Ankara Ecz. Fak. Derg., c. 49, sy. 2, ss. 402–424, 2025, doi: 10.33483/jfpau.1562768.
ISNAD Aydın, Bilge vd. “FRUITFUL REMEDIES: ANALYZING THERAPEUTIC POTENTIALS IN ESSENTIAL AND FATTY OILS, AND AQUEOUS EXTRACTS FROM PRUNUS CERASIFERA, MALUS SYLVESTRIS, AND CORNUS MAS USING LC-MS AND GC-MS”. Journal of Faculty of Pharmacy of Ankara University 49/2 (Mayıs 2025), 402-424. https://doi.org/10.33483/jfpau.1562768.
JAMA Aydın B, Yuca H, Öztürk G, Tekman E, Karakaya S, Göger G, Önal M, Demirci B, Güvenalp Z, Sytar O. FRUITFUL REMEDIES: ANALYZING THERAPEUTIC POTENTIALS IN ESSENTIAL AND FATTY OILS, AND AQUEOUS EXTRACTS FROM PRUNUS CERASIFERA, MALUS SYLVESTRIS, AND CORNUS MAS USING LC-MS AND GC-MS. Ankara Ecz. Fak. Derg. 2025;49:402–424.
MLA Aydın, Bilge vd. “FRUITFUL REMEDIES: ANALYZING THERAPEUTIC POTENTIALS IN ESSENTIAL AND FATTY OILS, AND AQUEOUS EXTRACTS FROM PRUNUS CERASIFERA, MALUS SYLVESTRIS, AND CORNUS MAS USING LC-MS AND GC-MS”. Journal of Faculty of Pharmacy of Ankara University, c. 49, sy. 2, 2025, ss. 402-24, doi:10.33483/jfpau.1562768.
Vancouver Aydın B, Yuca H, Öztürk G, Tekman E, Karakaya S, Göger G, Önal M, Demirci B, Güvenalp Z, Sytar O. FRUITFUL REMEDIES: ANALYZING THERAPEUTIC POTENTIALS IN ESSENTIAL AND FATTY OILS, AND AQUEOUS EXTRACTS FROM PRUNUS CERASIFERA, MALUS SYLVESTRIS, AND CORNUS MAS USING LC-MS AND GC-MS. Ankara Ecz. Fak. Derg. 2025;49(2):402-24.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.