Araştırma Makalesi
BibTex RIS Kaynak Göster

INCREASING THE SOLUBILITY PROPERTIES OF TETRABENAZINE AT BASIC MEDIUM BY USING SOLID DISPERSION TECHNOLOGY

Yıl 2025, Cilt: 49 Sayı: 2, 241 - 263, 19.05.2025
https://doi.org/10.33483/jfpau.1568365

Öz

Objective: The aim of this study is to use solid dispersion technology to increase the solubility of tetrabenazine (TBZ) at basic medium. The effect of solid dispersions on the solubility of TBZ, which has low solubility in water, was evaluated by characterization studies of solid dispersions. It was concluded that solid dispersion technology was efficient for the increasing the dissolution of TBZ at basic medium.
Material and Method: In order to increase the solubility of TBZ, three different solid dispersion formulations were prepared. For this purpose, Soluplus® and Kollidon® VA 64 were used as polymeric carriers and Gelucire® 50/13 was used as surfactant. The solid dispersion formulations prepared using these polymeric carriers and surfactant were named as KD-1, KD-2 and KD-3, respectively. All solid dispersions were obtained by mixing the active substance and polymer in a 1:1 ratio. The preparation process was carried out by solvent evaporation method and acetone was used as the solvent. Solid dispersions were obtained by evaporating acetone under low pressure in a rotavapor and in a 55°C water bath. TBZ quantification method was developed using high pressure liquid chromatography (HPLC) at 230 nm wavelength and analytical method validation was performed. Thermal properties of solid dispersions were analyzed by differential scanning calorimetry (DSC) in the range of 25-250°C; possible interactions between the polymer and the active substance were investigated using Fourier Transform Infrared (FT-IR) spectroscopy. The effect of solid dispersions on increasing the solubility of TBZ was evaluated by dissolution rate studies in pH 1.2 and pH 6.8 media, and the obtained samples were analyzed by HPLC. DDSolver software was used to determine the release kinetics of TBZ from solid dispersion formulations based on dissolution rate data.
Result and Discussion: The results of TBZ quantification analysis for solid dispersions showed that the average TBZ amounts in all three solid dispersions varied between 98.31% and 99.19%. Low standard deviation values were observed in all quantification analyses, demonstrating the consistency of the indicating. In thermal analyzes, it was determined that the endothermic peak of TBZ appeared at 130ºC and that solid dispersions transforming into an amorphous structure caused a decrease in the intensity of the endothermic peak. Spectra obtained by FT-IR spectroscopy showed that TBZ has physical or chemical interactions with different carrier polymers. The effect of solid dispersions on increasing the solubility of TBZ was investigated in pH 1.2 and pH 6.8 media with dissolution rate studies. TBZ showed rapid dissolution in pH 1.2 medium and was completely dissolved in the first 1 hour. At the end of 24 hours, 98.8% of the drug was dissolved in pH 1.2 medium, while dissolution occurred slower (28.8%) in pH 6.8 medium. Since the solubility of TBZ in pH 6.8 environment is low, the dissolution rate analysis of all prepared solid dispersions was carried out in this environment. It was observed that all prepared solid dispersion formulations increased the dissolution of TBZ in pH 6.8 environment. Especially, the solid dispersion prepared with Gelucire® 50/13 (KD-3) reached the highest dissolution rate (85.6%) at the end of 24 hours. As a result of in vitro dissolution studies, the release kinetics of KD-1, KD-2 and KD-3 formulations were assessed by DDSolver software. According to the evaluation of the results, the most fitted models for all three formulations were determined as Korsmeyer-Peppas and Weibull kinetics. The parameters of the Korsmeyer-Peppas model for KD-1, KD-2 and KD-3 were calculated as n=0.3351, n=0.3511 and n=0.3015, respectively, and the parameters of the Weibull model were calculated as β=0.4303, β=0.4369 and β=0.5422, respectively. Since the n value is less than 0.5 and the β value is less than 0.75, it is concluded that the release mechanism occurs similar to Fick diffusion and solid dispersion technology is efficient for the increasing the dissolution of TBZ at basic medium.

Kaynakça

  • 1. Demirkol, M.E., Şenbayram, Ş., Doğangüneş, G., Tamam, L. (2018). Tardiv diskinezi ve tedavi yaklaşımları. Psikiyatride Güncel Yaklaşımlar-Current Approaches in Psychiatry, 10(2), 239-254. [CrossRef]
  • 2. Claassen, D.O., Carroll, B., De Boer, L.M., Wu, E., Ayyagari, R., Gandhi, S., Stamler, D. (2017). Indirect tolerability comparison of Deutetrabenazine and Tetrabenazine for Huntington disease. Journal of Clinical Movement Disorder, 4(3), 1-11. [CrossRef]
  • 3. de Tommaso, M., Serpino, C., Sciruicchio, V. (2011). Management of Huntington's disease: Role of tetrabenazine. Therapeutics and Clinical Risk Management, 7, 123-129. [CrossRef]
  • 4. Paleacu, D. (2007). Tetrabenazine in the treatment of Huntington's disease. Neuropsychiatric Disease and Treatment, 3(5), 545-551.
  • 5. Cummings, M.A., Proctor, G.J., Stahl, S.M. (2018). Deuterium tetrabenazine for tardive dyskinesia. Clinical Schizophrrenia & Related Psychoses, 11(4), 214-220.
  • 6. Yero, T., Rey, J.A. (2008). Tetrabenazine (Xenazine), an FDA-Approved treatment option for Huntington’s disease-related chorea. Pharmacy and Therapeutics, 33(12), 690.
  • 7. Murphy, S.M., Puwanant, A., Griggs, R.C. (2012). Unintended effects of orphan product designation for rare neurological diseases. Annals of Neurology, 72(4), 481-490. [CrossRef]
  • 8. Huntington Study Group (2006). Tetrabenazine as antichorea therapy in Huntington disease: A randomized controlled trial. Neurology, 66(3), 366-372. [CrossRef]
  • 9. Kaur, N., Kumar, P., Jamwal, S., Deshmukh, R., Gauttam, V. (2016). Tetrabenazine: Spotlight on drug review. Annals of Neurosciences, 23(3), 176-185. [CrossRef]
  • 10. PubChem, National Center for Biotechnology Information, US National Library of Medicine, Bethesda, ABD Web Site. (2005). Retrieved May 10, 2018, from https://pubchem.ncbi.nlm.nih.gov/compound /Tetrabenazine. Erişim tarihi: 30.09.2024.
  • 11. Arora, A., Kumar, S., Ali, J., Baboota, S. (2020). Intranasal delivery of tetrabenazine nanoemulsion via olfactory region for better treatment of hyperkinetic movement associated with Huntington’s disease: Pharmacokinetic and brain delivery study. Chemistry and Physics of Lipids, 230, 104917. [CrossRef]
  • 12. Begum, S.H., Prakash, P.R., Khan, K.A.A., Bhaskar, N.V. (2021). Formulation, optimization and evaluation of Biopharmaceutics Classification System (BCS) Class-IV drug nanocoacervates. International Journal of Pharmaceutical Sciences, 67(2), 144-152. [CrossRef]
  • 13. Roy, S., Kannan, K., Choulwa, A. (2017). Optimization of tetrabenazine tablet formulation by using of partial factorial design. International Journal of Pharmaceutical Sciences And Research, 26, 2940-2948.
  • 14. Bhalani, D.V., Nutan, B., Kumar, A., Chandel, A.K.S. (2022). Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines, 10(9), 2055. [CrossRef]
  • 15. Savjani, K.T., Gajjar, A.K., Savjani, J.K. (2012). Drug solubility: Importance and enhancement techniques. International Scholarly Research Network Pharmaceutics, 2012(1), 195727. [CrossRef]
  • 16. Mantri, R.V., Sanghvi, R., Zhu, H.J. (2017). Chapter 1 - Solubility of Pharmaceutical Solids. In: Y. Qiu, Y. Chen, G.G.Z. Zhang, L. Yu and R.V. Mantri (Eds), Developing Solid Oral Dosage Forms (Second Edition), (pp. 3-22). Boston, Academic Press. [CrossRef]
  • 17. Oliveira, V.D.S., Almeida, A.S.D., Albuquerque, A.D.S., Duarte, F.I.C., Queiroz, B.C.S.H., Converti, A., Lima, A.A.N.D. (2020). Therapeutic applications of solid dispersions for drugs and new molecules: In vitro and in vivo activities. Pharmaceutics, 12(10), 933. [CrossRef]
  • 18. Sareen, S., Mathew, G., Joseph, L. (2012). Improvement in solubility of poor water-soluble drugs by solid dispersion. International Journal of Pharmaceutical Investigation, 2(1), 12-17. [CrossRef]
  • 19. Senta-Loys, Z., Bourgeois, S., Valour, J., Briançon, S., Fessi, H. (2017). Orodispersible films based on amorphous solid dispersions of tetrabenazine. International Journal of Pharmaceutics, 518(1-2), 242-252. [CrossRef]
  • 20. Vasconcelos, T., Maques, S., Neves, J.D., Sarmento, B. (2016). Amorphous solid dispersions: Rational selection of a manufacturing process. Advanced Drug Delivery Reviews, 100, 85-101. [CrossRef]
  • 21. Bhujbal, S.V., Mitra, B., Jain, U., Gong, Y., Agrawal, A., Karki, S., Taylor, L.S., Kumar, S., Zhou, Q. (2021). Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharmaceutica Sinica B, 11(8), 2505-2536. [CrossRef]
  • 22. Nazlı, H., Mesut, B., Özsoy, Y. (2021). Çözünürlüğü düşük olan etken maddeler için farmasötik yaklaşımlar ve aprepitantın çözünürlüğü. Fabad Journal of Pharmaceutical Sciences, 46(3), 325-344.
  • 23. Shi, Q., Chen, H., Wng, Y., Xu, J., Zhang, C. (2022). Amorphous solid dispersions: Role of the polymer and its importance in physical stability and in vitro performance. Pharmaceutics, 14(8), 1747. [CrossRef]
  • 24. Fouad, S.A., Malaak, F.A., El-Nabarawi, M.A., Zeid, K.A., Ghoneim, A.M. (2021). Preparation of solid dispersion systems for enhanced dissolution of poorly water soluble diacerein: In-vitro evaluation, optimization and physiologically based pharmacokinetic modeling. PLoS One, 16(1), e0245482. [CrossRef]
  • 25. Zhang, J., Guo, M., Luo, M., Cai, T. (2023). Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian Journal of Pharmaceutical Sciences, 18(4), 100834. [CrossRef]
  • 26. Pignatello, R., Corsaro, R., Bonaccorso, A., Zingale, E., Corbone, C., Musumeci, T. (2022). Soluplus(®) polymeric nanomicelles improve solubility of BCS-class II drugs. Drug Delivery and Translational Research, 12(8), 1991-2006. [CrossRef]
  • 27. Attia, M.S., Elshahat, A., Hamdy, A., Fathi, A.M., Emad-Eldin, M., Ghazy, F.S., Chopra, H., Ibrahim, T.M. (2023). Soluplus® as a solubilizing excipient for poorly water-soluble drugs: Recent advances in formulation strategies and pharmaceutical product features. Journal of Drug Delivery Science and Technology, 84, 104519. [CrossRef]
  • 28. Lim, H., Hoag, S.W. (2013). Plasticizer effects on physical-mechanical properties of solvent cast Soluplus® films. American Association of Pharmaceutical Scientists, 14(3), 903-910. [CrossRef]
  • 29. Lim, H., Yu, D., Hoag, S.W. (2021). Application of near-infrared spectroscopy in detecting residual crystallinity in carbamazepine-Soluplus® solid dispersions prepared with solvent casting and hot-melt extrusion. Journal of Drug Delivery Science and Technology, 65, 102713. [CrossRef]
  • 30. Shamma, R.N., Basha, M. (2013). Soluplus®: A novel polymeric solubilizer for optimization of Carvedilol solid dispersions: Formulation design and effect of method of preparation. Powder Technology, 237, 406-414. [CrossRef]
  • 31. Strojewski, D., Krupa, A. (2022). Kollidon® VA 64 and Soluplus® as modern polymeric carriers for amorphous solid dispersions. Polimers in Medicine, 52(1), 19-29.
  • 32. Mohsin, S., Rahman, N., Idrees, M.A., Sarfraz, M.K., Khan, M.K., Mustafa, G. (2012). Suitability of Gelucire 50/13 for controlled release formulation of salbutamol sulphate. Pakistan Journal of Pharmaceutical Sciences, 25(1), 35-41.
  • 33. Potluri, R.H., Bandari, S., Jukanti, R., Veerareddy, P.R. (2011). Solubility enhancement and physicochemical characterization of carvedilol solid dispersion with Gelucire 50/13. Archives of Pharmacal Research, 34(1), 51-57. [CrossRef]
  • 34. Bandari, S., Jadav, S., Eedara, B.B., Dhurke, R., Jukanti, R. (2014). Enhancement of Solubility and dissolution rate of Loratadine with Gelucire 50/13. Journal of Pharmaceutical Innovation, 9(2), 141-149. [CrossRef]
  • 35. Ghadi, R., Dand, N. (2017). BCS class IV drugs: Highly notorious candidates for formulation development. Journal of Controlled Release, 248, 71-95. [CrossRef]
  • 36. Panigrahi, K.C., Patra, C.N., Jena, G.K., Ghose, D., Jena, J., Panda, S.K., Sahu, M. (2018). Gelucire: A versatile polymer for modified release drug delivery system. Future Journal of Pharmaceutical Sciences, 4(1), 102-108. [CrossRef]
  • 37. Mundada, A.S. (2023). Solid dispersion: A review. International Journal of Pharmacy Research & Technology (IJPRT), 11(2), 1-16.
  • 38. Zuccari, G., Russo, E., Villa, C., Zorzoli, A., Marimpietri, D., Marchitto, L., Alfei, S. (2023). Preparation and characterization of amorphous solid dispersions for the solubilization of Fenretinide. Pharmaceuticals, 16(3), 388. [CrossRef]
  • 39. Beneš, M., Pekárek, T., Beránek, J., Havlíče, J., Krejčík, L., Šimek, M., Tkadlecová, M., Doležal, P. (2017). Methods for the preparation of amorphous solid dispersions-A comparative study. Journal of Drug Delivery Science and Technology, 38, 125-134. [CrossRef]
  • 40. Solanki, N., Mehta, M., Satija, S., Pandey, P. (2016). Solvent evaporation technique: An innovative approach to increase gastric retention. International Journal of Advanced Scientific Research, 1, 60-67.
  • 41. Siva, K.V.B., Eswara, R.K., Girish, B.P., Sanjay, D.V., Alok, P.T. (2012). Process for Preparing Tetrabenazine. WO 2012/081031 A1.
  • 42. United States Pharmacopeia. (2024). Reagents, 0.1 N Hydrochloric Acid VS. USP-NF. Rockville, MD: United States Pharmacopeia.
  • 43. United States Pharmacopeia. (2024). Reagents, Buffer Solutions. USP-NF. Rockville, MD: United States Pharmacopeia.
  • 44. Zhang, Y., Huo, M., Zhou, J., Zou, A., Li, W., Yao, C., Xie, S. (2010), DDSolver: An add-in program for modeling and comparison of drug dissolution profiles. American Association of Pharmaceutical Scientists Journal, 12(3), 263-271. [CrossRef]
  • 45. Chicco, D., Warrens, M.J., Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623. [CrossRef]
  • 46. Budiman, A., Nurani, N.V., Laelasari, E., Muchtaridi, M., Sriwidodo, S., Aulifa, D.L. (2023). Effect of drug-polymer interaction in amorphous solid dispersion on the physical stability and dissolution of drugs: The case of alpha-mangostin. Polymers, 15(14), 3034. [CrossRef]
  • 47. Kojima, T., Takeda, J., Song, Y., Yamamoto, K., Ikeda, Y. (2023). Polymer-inducing chemical degradation of amorphous solid dispersions driven by drug-polymer interactions for physical stabilization. International Journal of Pharmaceutics, 647, 123504. [CrossRef]
  • 48. Eloy, J.D.O., Saraiva, J., Albuquerque, S.D., Marchetti J.M. (2012). Solid dispersion of ursolic acid in Gelucire 50/13: A strategy to enhance drug release and trypanocidal activity. American Association of Pharmaceutical Scientists, 13(4), 1436-1445. [CrossRef]
  • 49. Lee, D.H., Yeam, D.W., Song, Y.S., Cho, H.R., Choi, T.S., Kang, M.J., Choi, Y.W. (2015). Improved oral absorption of dutasteride via Soluplus®-based supersaturable self-emulsifying drug delivery system (S-SEDDS). International Journal of Pharmaceutics, 478(1), 341-347. [CrossRef]
  • 50. Tekade, A.R., Yadav, J.N. (2020). A review on solid dispersion and carriers used therein for solubility enhancement of poorly water soluble drugs. Advanced Pharmaceutical Bulletin, 10(3), 359-369. [CrossRef]
  • 51. Liu, P., Zhou, J., Chang, J., Liu, X., Xue, H., Wang, R., Li, Z., Li, C., Wang, J., Liu, C. (2020). Soluplus-mediated diosgenin amorphous solid dispersion with high solubility and high stability: Development, characterization and oral bioavailability. Drug Design, Development and Therapy, 14, 2959-2975. [CrossRef]
  • 52. Shi, Q., Wang, Y., Moinuddin, S.M., Feng, X., Ahsan, F. (2022). Co-amorphous drug delivery systems: A review of physical stability, in vitro and in vivo performance. American Association of Pharmaceutical Scientists, 23(7), 259. [CrossRef]
  • 53. Bhugra, C., Pikal, M.J. (2008). Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. Journal of Pharmaceutical Sciences, 97(4), 1329-1349. [CrossRef]
  • 54. Hou, H.H., Rajesh, A., Pandya, K.M., Lubach, J.W., Muliadi, A., Yost, E., Jia, W., Nagapudi, K. (2019). Impact of method of preparation of amorphous solid dispersions on mechanical properties: Comparison of coprecipitation and spray drying. Journal of Pharmaceutical Sciences, 108(2), 870-879. [CrossRef]
  • 55. Nair, A.R., Lakshman, Y.D., Anand, V.S.K., Sree, K.S.N., Bhat, K., Dengale, S.J. (2020). Overview of extensively employed polymeric carriers in solid dispersion technology. American Association of Pharmaceutical Scientists, 21(8), 309. [CrossRef]
  • 56. Chaudhari, S.P., Dugar, R.P. (2017). Application of surfactants in solid dispersion technology for improving solubility of poorly water soluble drugs. Journal of Drug Delivery Science and Technology, 41, 68-77. [CrossRef]
  • 57. Qiang, W., Löbmann, K., McCoy, C.P., Andrews, G.P., Zhao, M. (2023). The effects of surfactants on the performance of polymer-based microwave-induced in situ amorphization. International Journal of Pharmaceutics, 630, 122426. [CrossRef]
  • 58. Du, L., Mackeprang, K., Kjaergaard, H.G. (2013). Fundamental and overtone vibrational spectroscopy, enthalpy of hydrogen bond formation and equilibrium constant determination of the methanol-dimethylamine complex. Physical Chemistry Chemical Physics, 15(25), 10194-10206. [CrossRef]
  • 59. Petit, T., Puskar, L. (2018). FTIR spectroscopy of nanodiamonds: Methods and interpretation. Diamond and Related Materials, 89, 52-66. [CrossRef]
  • 60. Tuğcu-Demiröz, F., Saar, S., Kara, A.A., Yıldız, A., Tunçel, E., Acartürk, F. (2021). Development and characterization of chitosan nanoparticles loaded nanofiber hybrid system for vaginal controlled release of benzydamine. European Journal of Pharmaceutical Sciences, 161, 105801. [CrossRef]
  • 61. Al-Akayleh, F., Al-Naji, I., Adwan, S., Al-Remawi, M., Shubair, M. (2022). Enhancement of curcumin solubility using a novel solubilizing polymer soluplus®. Journal of Pharmaceutical Innovation, 17(1), 142-154. [CrossRef]
  • 62. Pawar, J., Suryawanshi, D., Moravkar, K., Aware, R., Shetty, V., Maniruzzaman, M., Amin, P. (2018). Study the influence of formulation process parameters on solubility and dissolution enhancement of efavirenz solid solutions prepared by hot-melt extrusion: A QbD methodology. Drug Delivery and Translational Research, 8(6), 1644-1657. [CrossRef]
  • 63. Bali, D.E., Osman, M.A., Maghraby, G.M.E. (2016). Enhancement of dissolution rate and intestinal stability of clopidogrel hydrogen sulfate. European Journal of Drug Metabolism and Pharmacokinetics, 41(6), 807-818. [CrossRef]
  • 64. Hanada, M., Jermain, S.V., Williams, R.O. (2018). Enhanced dissolution of a porous carrier-containing ternary amorphous solid dispersion system prepared by a hot melt method. Journal of Pharmaceutical Sciences, 107(1), 362-371. [CrossRef]
  • 65. Costa, P., Sousa Lobo, J. M. (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 13(2), 123-133. [CrossRef]
  • 66. Yılmaz Usta, D., Demirtaş, Ö., Ökçelik, C., Uslu, A., Teksı̇n, Z. Ş. (2018). Evaluation of in vitro dissolution characteristics of flurbiprofen, a BCS class IIa drug. FABAD Journal of Pharmaceutical Sciences, 43(2), 27-34.
  • 67. Paarakh, M.P., Jose, P.A., Setty, C.M., PeterChristopher, G.V. (2023). Release kinetics-concepts and applications. International Journal of Pharmacy Research & Technology, 8(1), 12-20.

TETRABENAZİNİN BAZİK ORTAMDAKİ ÇÖZÜNME ÖZELLİKLERİNİN KATI DİSPERSİYON TEKNOLOJİSİ İLE ARTIRILMASI

Yıl 2025, Cilt: 49 Sayı: 2, 241 - 263, 19.05.2025
https://doi.org/10.33483/jfpau.1568365

Öz

Amaç: Bu çalışmanın amacı, suda düşük çözünürlüğe sahip bir etkin madde olan tetrabenazinin (TBZ) bazik ortamda çözünmesini artırmak için katı dispersiyon teknolojisinin kullanılmasıdır. Katı dispersiyonların karakterizasyon çalışmaları sonucunda elde edilen bulgular ile katı dispersiyon teknolojisinin TBZ’nin çözünmesi üzerindeki etkileri değerlendirilmiştir. Katı dispersiyon teknolojsinin TBZ’nin bazik ortamda çözünmesini artırmada etkili olduğu sonucuna varılmıştır.
Gereç ve Yöntem: TBZ’nin çözünmesini artırmak amacıyla üç farklı katı dispersiyon formülasyonu hazırlanmıştır. Bu amaçla polimerik taşıyıcılar olarak Soluplus® ve Kollidon® VA 64, yüzey aktif madde olarak Gelucire® 50/13 kullanılmıştır. Bu polimerik taşıyıcılar ve yüzey aktif madde kullanılarak hazırlanan katı dispersiyon formülasyonları sırasıyla KD-1, KD-2 ve KD-3 olarak isimlendirilmiştir. Tüm katı dispersiyonlar, etkin madde ve polimerin 1:1 oranında karıştırılmasıyla elde edilmiştir. Hazırlama işlemi, çözücü buharlaştırma yöntemi ile gerçekleştirilmiş ve çözücü olarak aseton kullanılmıştır. Asetonun, rotavaporda düşük basınç altında ve 55°C su banyosunda buharlaştırılması ile katı dispersiyonlar elde edilmiştir. TBZ miktar tayini yöntemi, yüksek basınçlı sıvı kromatografisi (HPLC) kullanılarak 230 nm dalga boyunda geliştirilmiştir ve analitik yöntem validasyonu yapılmıştır. Katı dispersiyonların termal özellikleri diferansiyel taramalı kalorimetre (DSC) ile 25-250°C aralığında analiz edilmiş; Fourier Dönüşümlü Kızılötesi (FT-IR) spektroskopisi kullanılarak polimer ve etkin madde arasındaki olası etkileşimler incelenmiştir. Katı dispersiyonların TBZ’nin çözünmesini artırmaya olan etkisi, pH 1.2 ve pH 6.8 ortamlarında yapılan çözünme hızı çalışmaları ile değerlendirilmiş, elde edilen numuneler HPLC ile analiz edilmiştir. TBZ’nin katı dispersiyon formülasyonlarından salım kinetiklerinin belirlenmesi için çözünme hızı verilerinden hareketle DDSolver yazılımı kullanılmıştır.
Sonuç ve Tartışma: Katı dispersiyonlar için yapılan TBZ miktar tayini analiz sonuçları, her üç katı dispersiyonda ortalama TBZ miktarlarının %98.31 ile %99.19 arasında değiştiğini göstermiştir. Tüm miktar tayini analizlerinde düşük standart sapma değerleri gözlenmiş ve bu durum ölçümlerin tutarlılığını göstermiştir. Termal analizlerde, TBZ’nin endotermik pikinin 130ºC’de ortaya çıktığı ve amorf yapıya dönüşen katı dispersiyonların endotermik pikin şiddetinde azalmaya yol açtığı belirlenmiştir. FT-IR spektroskopisi ile elde edilen spektrumlar, TBZ’nin farklı taşıyıcı polimerlerle fiziksel veya kimyasal etkileşiminin olduğunu göstermiştir. Katı dispersiyonların TBZ’nin çözünmesini artırmaya olan etkisi çözünme hızı çalışmaları ile pH 1.2 ve pH 6.8 ortamlarında incelenmiştir. TBZ, pH 1.2 ortamında hızlı çözünme göstermiş ve ilk 1 saatte tamamen çözünmüştür. 24 saatin sonunda pH 1.2 ortamında etkin maddenin %98.8’i çözünmüştür, pH 6.8 ortamında ise çözünme daha yavaş (%28.8) gerçekleşmiştir. TBZ’nin pH 6.8 ortamındaki çözünürlüğü düşük olduğu için hazırlanan tüm katı dispersiyonların çözünme hızı çalışmaları bu ortamda gerçekleşmiştir. Hazırlanan tüm katı dispersiyon formülasyonlarının, TBZ’nin pH 6.8 ortamındaki çözünme hızını artırdığı gözlenmiştir. Özellikle Gelucire® 50/13 ile hazırlanan katı dispersiyon formülasyonu (KD-3), 24 saatin sonunda en yüksek çözünme oranına (%85.6) ulaşmıştır. In vitro çözünme hızı çalışmaları sonucunda KD-1, KD-2 ve KD-3 formülasyonlarının salım kinetikleri DDSolver yazılımı ile belirlenmiştir. Değerlendirme sonuçlarına göre her üç formülasyon için en uyumlu modeller Korsmeyer-Peppas ve Weibull kinetikleri olarak belirlenmiştir. KD-1, KD-2 ve KD-3 için Korsmeyer-Peppas modeline ait parametreler sırasıyla, n=0.3351, n=0.3511 ve n=0.3015 olarak belirlenmiştir. Weibull modeline ait parametreler sırasıyla, β=0.4303, β=0.4369 ve β=0.5422 olarak hesaplanmıştır. n değeri 0.5’ten, β değeri 0.75’ten düşük olduğundan, salım mekanizmasının Fick difüzyonuna benzer şekilde gerçekleştiği ve katı dispersiyon teknolojisinin TBZ’nin bazik ortamda çözünmesini artırmada etkili olduğu sonucuna varılmıştır.

Kaynakça

  • 1. Demirkol, M.E., Şenbayram, Ş., Doğangüneş, G., Tamam, L. (2018). Tardiv diskinezi ve tedavi yaklaşımları. Psikiyatride Güncel Yaklaşımlar-Current Approaches in Psychiatry, 10(2), 239-254. [CrossRef]
  • 2. Claassen, D.O., Carroll, B., De Boer, L.M., Wu, E., Ayyagari, R., Gandhi, S., Stamler, D. (2017). Indirect tolerability comparison of Deutetrabenazine and Tetrabenazine for Huntington disease. Journal of Clinical Movement Disorder, 4(3), 1-11. [CrossRef]
  • 3. de Tommaso, M., Serpino, C., Sciruicchio, V. (2011). Management of Huntington's disease: Role of tetrabenazine. Therapeutics and Clinical Risk Management, 7, 123-129. [CrossRef]
  • 4. Paleacu, D. (2007). Tetrabenazine in the treatment of Huntington's disease. Neuropsychiatric Disease and Treatment, 3(5), 545-551.
  • 5. Cummings, M.A., Proctor, G.J., Stahl, S.M. (2018). Deuterium tetrabenazine for tardive dyskinesia. Clinical Schizophrrenia & Related Psychoses, 11(4), 214-220.
  • 6. Yero, T., Rey, J.A. (2008). Tetrabenazine (Xenazine), an FDA-Approved treatment option for Huntington’s disease-related chorea. Pharmacy and Therapeutics, 33(12), 690.
  • 7. Murphy, S.M., Puwanant, A., Griggs, R.C. (2012). Unintended effects of orphan product designation for rare neurological diseases. Annals of Neurology, 72(4), 481-490. [CrossRef]
  • 8. Huntington Study Group (2006). Tetrabenazine as antichorea therapy in Huntington disease: A randomized controlled trial. Neurology, 66(3), 366-372. [CrossRef]
  • 9. Kaur, N., Kumar, P., Jamwal, S., Deshmukh, R., Gauttam, V. (2016). Tetrabenazine: Spotlight on drug review. Annals of Neurosciences, 23(3), 176-185. [CrossRef]
  • 10. PubChem, National Center for Biotechnology Information, US National Library of Medicine, Bethesda, ABD Web Site. (2005). Retrieved May 10, 2018, from https://pubchem.ncbi.nlm.nih.gov/compound /Tetrabenazine. Erişim tarihi: 30.09.2024.
  • 11. Arora, A., Kumar, S., Ali, J., Baboota, S. (2020). Intranasal delivery of tetrabenazine nanoemulsion via olfactory region for better treatment of hyperkinetic movement associated with Huntington’s disease: Pharmacokinetic and brain delivery study. Chemistry and Physics of Lipids, 230, 104917. [CrossRef]
  • 12. Begum, S.H., Prakash, P.R., Khan, K.A.A., Bhaskar, N.V. (2021). Formulation, optimization and evaluation of Biopharmaceutics Classification System (BCS) Class-IV drug nanocoacervates. International Journal of Pharmaceutical Sciences, 67(2), 144-152. [CrossRef]
  • 13. Roy, S., Kannan, K., Choulwa, A. (2017). Optimization of tetrabenazine tablet formulation by using of partial factorial design. International Journal of Pharmaceutical Sciences And Research, 26, 2940-2948.
  • 14. Bhalani, D.V., Nutan, B., Kumar, A., Chandel, A.K.S. (2022). Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines, 10(9), 2055. [CrossRef]
  • 15. Savjani, K.T., Gajjar, A.K., Savjani, J.K. (2012). Drug solubility: Importance and enhancement techniques. International Scholarly Research Network Pharmaceutics, 2012(1), 195727. [CrossRef]
  • 16. Mantri, R.V., Sanghvi, R., Zhu, H.J. (2017). Chapter 1 - Solubility of Pharmaceutical Solids. In: Y. Qiu, Y. Chen, G.G.Z. Zhang, L. Yu and R.V. Mantri (Eds), Developing Solid Oral Dosage Forms (Second Edition), (pp. 3-22). Boston, Academic Press. [CrossRef]
  • 17. Oliveira, V.D.S., Almeida, A.S.D., Albuquerque, A.D.S., Duarte, F.I.C., Queiroz, B.C.S.H., Converti, A., Lima, A.A.N.D. (2020). Therapeutic applications of solid dispersions for drugs and new molecules: In vitro and in vivo activities. Pharmaceutics, 12(10), 933. [CrossRef]
  • 18. Sareen, S., Mathew, G., Joseph, L. (2012). Improvement in solubility of poor water-soluble drugs by solid dispersion. International Journal of Pharmaceutical Investigation, 2(1), 12-17. [CrossRef]
  • 19. Senta-Loys, Z., Bourgeois, S., Valour, J., Briançon, S., Fessi, H. (2017). Orodispersible films based on amorphous solid dispersions of tetrabenazine. International Journal of Pharmaceutics, 518(1-2), 242-252. [CrossRef]
  • 20. Vasconcelos, T., Maques, S., Neves, J.D., Sarmento, B. (2016). Amorphous solid dispersions: Rational selection of a manufacturing process. Advanced Drug Delivery Reviews, 100, 85-101. [CrossRef]
  • 21. Bhujbal, S.V., Mitra, B., Jain, U., Gong, Y., Agrawal, A., Karki, S., Taylor, L.S., Kumar, S., Zhou, Q. (2021). Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharmaceutica Sinica B, 11(8), 2505-2536. [CrossRef]
  • 22. Nazlı, H., Mesut, B., Özsoy, Y. (2021). Çözünürlüğü düşük olan etken maddeler için farmasötik yaklaşımlar ve aprepitantın çözünürlüğü. Fabad Journal of Pharmaceutical Sciences, 46(3), 325-344.
  • 23. Shi, Q., Chen, H., Wng, Y., Xu, J., Zhang, C. (2022). Amorphous solid dispersions: Role of the polymer and its importance in physical stability and in vitro performance. Pharmaceutics, 14(8), 1747. [CrossRef]
  • 24. Fouad, S.A., Malaak, F.A., El-Nabarawi, M.A., Zeid, K.A., Ghoneim, A.M. (2021). Preparation of solid dispersion systems for enhanced dissolution of poorly water soluble diacerein: In-vitro evaluation, optimization and physiologically based pharmacokinetic modeling. PLoS One, 16(1), e0245482. [CrossRef]
  • 25. Zhang, J., Guo, M., Luo, M., Cai, T. (2023). Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian Journal of Pharmaceutical Sciences, 18(4), 100834. [CrossRef]
  • 26. Pignatello, R., Corsaro, R., Bonaccorso, A., Zingale, E., Corbone, C., Musumeci, T. (2022). Soluplus(®) polymeric nanomicelles improve solubility of BCS-class II drugs. Drug Delivery and Translational Research, 12(8), 1991-2006. [CrossRef]
  • 27. Attia, M.S., Elshahat, A., Hamdy, A., Fathi, A.M., Emad-Eldin, M., Ghazy, F.S., Chopra, H., Ibrahim, T.M. (2023). Soluplus® as a solubilizing excipient for poorly water-soluble drugs: Recent advances in formulation strategies and pharmaceutical product features. Journal of Drug Delivery Science and Technology, 84, 104519. [CrossRef]
  • 28. Lim, H., Hoag, S.W. (2013). Plasticizer effects on physical-mechanical properties of solvent cast Soluplus® films. American Association of Pharmaceutical Scientists, 14(3), 903-910. [CrossRef]
  • 29. Lim, H., Yu, D., Hoag, S.W. (2021). Application of near-infrared spectroscopy in detecting residual crystallinity in carbamazepine-Soluplus® solid dispersions prepared with solvent casting and hot-melt extrusion. Journal of Drug Delivery Science and Technology, 65, 102713. [CrossRef]
  • 30. Shamma, R.N., Basha, M. (2013). Soluplus®: A novel polymeric solubilizer for optimization of Carvedilol solid dispersions: Formulation design and effect of method of preparation. Powder Technology, 237, 406-414. [CrossRef]
  • 31. Strojewski, D., Krupa, A. (2022). Kollidon® VA 64 and Soluplus® as modern polymeric carriers for amorphous solid dispersions. Polimers in Medicine, 52(1), 19-29.
  • 32. Mohsin, S., Rahman, N., Idrees, M.A., Sarfraz, M.K., Khan, M.K., Mustafa, G. (2012). Suitability of Gelucire 50/13 for controlled release formulation of salbutamol sulphate. Pakistan Journal of Pharmaceutical Sciences, 25(1), 35-41.
  • 33. Potluri, R.H., Bandari, S., Jukanti, R., Veerareddy, P.R. (2011). Solubility enhancement and physicochemical characterization of carvedilol solid dispersion with Gelucire 50/13. Archives of Pharmacal Research, 34(1), 51-57. [CrossRef]
  • 34. Bandari, S., Jadav, S., Eedara, B.B., Dhurke, R., Jukanti, R. (2014). Enhancement of Solubility and dissolution rate of Loratadine with Gelucire 50/13. Journal of Pharmaceutical Innovation, 9(2), 141-149. [CrossRef]
  • 35. Ghadi, R., Dand, N. (2017). BCS class IV drugs: Highly notorious candidates for formulation development. Journal of Controlled Release, 248, 71-95. [CrossRef]
  • 36. Panigrahi, K.C., Patra, C.N., Jena, G.K., Ghose, D., Jena, J., Panda, S.K., Sahu, M. (2018). Gelucire: A versatile polymer for modified release drug delivery system. Future Journal of Pharmaceutical Sciences, 4(1), 102-108. [CrossRef]
  • 37. Mundada, A.S. (2023). Solid dispersion: A review. International Journal of Pharmacy Research & Technology (IJPRT), 11(2), 1-16.
  • 38. Zuccari, G., Russo, E., Villa, C., Zorzoli, A., Marimpietri, D., Marchitto, L., Alfei, S. (2023). Preparation and characterization of amorphous solid dispersions for the solubilization of Fenretinide. Pharmaceuticals, 16(3), 388. [CrossRef]
  • 39. Beneš, M., Pekárek, T., Beránek, J., Havlíče, J., Krejčík, L., Šimek, M., Tkadlecová, M., Doležal, P. (2017). Methods for the preparation of amorphous solid dispersions-A comparative study. Journal of Drug Delivery Science and Technology, 38, 125-134. [CrossRef]
  • 40. Solanki, N., Mehta, M., Satija, S., Pandey, P. (2016). Solvent evaporation technique: An innovative approach to increase gastric retention. International Journal of Advanced Scientific Research, 1, 60-67.
  • 41. Siva, K.V.B., Eswara, R.K., Girish, B.P., Sanjay, D.V., Alok, P.T. (2012). Process for Preparing Tetrabenazine. WO 2012/081031 A1.
  • 42. United States Pharmacopeia. (2024). Reagents, 0.1 N Hydrochloric Acid VS. USP-NF. Rockville, MD: United States Pharmacopeia.
  • 43. United States Pharmacopeia. (2024). Reagents, Buffer Solutions. USP-NF. Rockville, MD: United States Pharmacopeia.
  • 44. Zhang, Y., Huo, M., Zhou, J., Zou, A., Li, W., Yao, C., Xie, S. (2010), DDSolver: An add-in program for modeling and comparison of drug dissolution profiles. American Association of Pharmaceutical Scientists Journal, 12(3), 263-271. [CrossRef]
  • 45. Chicco, D., Warrens, M.J., Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623. [CrossRef]
  • 46. Budiman, A., Nurani, N.V., Laelasari, E., Muchtaridi, M., Sriwidodo, S., Aulifa, D.L. (2023). Effect of drug-polymer interaction in amorphous solid dispersion on the physical stability and dissolution of drugs: The case of alpha-mangostin. Polymers, 15(14), 3034. [CrossRef]
  • 47. Kojima, T., Takeda, J., Song, Y., Yamamoto, K., Ikeda, Y. (2023). Polymer-inducing chemical degradation of amorphous solid dispersions driven by drug-polymer interactions for physical stabilization. International Journal of Pharmaceutics, 647, 123504. [CrossRef]
  • 48. Eloy, J.D.O., Saraiva, J., Albuquerque, S.D., Marchetti J.M. (2012). Solid dispersion of ursolic acid in Gelucire 50/13: A strategy to enhance drug release and trypanocidal activity. American Association of Pharmaceutical Scientists, 13(4), 1436-1445. [CrossRef]
  • 49. Lee, D.H., Yeam, D.W., Song, Y.S., Cho, H.R., Choi, T.S., Kang, M.J., Choi, Y.W. (2015). Improved oral absorption of dutasteride via Soluplus®-based supersaturable self-emulsifying drug delivery system (S-SEDDS). International Journal of Pharmaceutics, 478(1), 341-347. [CrossRef]
  • 50. Tekade, A.R., Yadav, J.N. (2020). A review on solid dispersion and carriers used therein for solubility enhancement of poorly water soluble drugs. Advanced Pharmaceutical Bulletin, 10(3), 359-369. [CrossRef]
  • 51. Liu, P., Zhou, J., Chang, J., Liu, X., Xue, H., Wang, R., Li, Z., Li, C., Wang, J., Liu, C. (2020). Soluplus-mediated diosgenin amorphous solid dispersion with high solubility and high stability: Development, characterization and oral bioavailability. Drug Design, Development and Therapy, 14, 2959-2975. [CrossRef]
  • 52. Shi, Q., Wang, Y., Moinuddin, S.M., Feng, X., Ahsan, F. (2022). Co-amorphous drug delivery systems: A review of physical stability, in vitro and in vivo performance. American Association of Pharmaceutical Scientists, 23(7), 259. [CrossRef]
  • 53. Bhugra, C., Pikal, M.J. (2008). Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. Journal of Pharmaceutical Sciences, 97(4), 1329-1349. [CrossRef]
  • 54. Hou, H.H., Rajesh, A., Pandya, K.M., Lubach, J.W., Muliadi, A., Yost, E., Jia, W., Nagapudi, K. (2019). Impact of method of preparation of amorphous solid dispersions on mechanical properties: Comparison of coprecipitation and spray drying. Journal of Pharmaceutical Sciences, 108(2), 870-879. [CrossRef]
  • 55. Nair, A.R., Lakshman, Y.D., Anand, V.S.K., Sree, K.S.N., Bhat, K., Dengale, S.J. (2020). Overview of extensively employed polymeric carriers in solid dispersion technology. American Association of Pharmaceutical Scientists, 21(8), 309. [CrossRef]
  • 56. Chaudhari, S.P., Dugar, R.P. (2017). Application of surfactants in solid dispersion technology for improving solubility of poorly water soluble drugs. Journal of Drug Delivery Science and Technology, 41, 68-77. [CrossRef]
  • 57. Qiang, W., Löbmann, K., McCoy, C.P., Andrews, G.P., Zhao, M. (2023). The effects of surfactants on the performance of polymer-based microwave-induced in situ amorphization. International Journal of Pharmaceutics, 630, 122426. [CrossRef]
  • 58. Du, L., Mackeprang, K., Kjaergaard, H.G. (2013). Fundamental and overtone vibrational spectroscopy, enthalpy of hydrogen bond formation and equilibrium constant determination of the methanol-dimethylamine complex. Physical Chemistry Chemical Physics, 15(25), 10194-10206. [CrossRef]
  • 59. Petit, T., Puskar, L. (2018). FTIR spectroscopy of nanodiamonds: Methods and interpretation. Diamond and Related Materials, 89, 52-66. [CrossRef]
  • 60. Tuğcu-Demiröz, F., Saar, S., Kara, A.A., Yıldız, A., Tunçel, E., Acartürk, F. (2021). Development and characterization of chitosan nanoparticles loaded nanofiber hybrid system for vaginal controlled release of benzydamine. European Journal of Pharmaceutical Sciences, 161, 105801. [CrossRef]
  • 61. Al-Akayleh, F., Al-Naji, I., Adwan, S., Al-Remawi, M., Shubair, M. (2022). Enhancement of curcumin solubility using a novel solubilizing polymer soluplus®. Journal of Pharmaceutical Innovation, 17(1), 142-154. [CrossRef]
  • 62. Pawar, J., Suryawanshi, D., Moravkar, K., Aware, R., Shetty, V., Maniruzzaman, M., Amin, P. (2018). Study the influence of formulation process parameters on solubility and dissolution enhancement of efavirenz solid solutions prepared by hot-melt extrusion: A QbD methodology. Drug Delivery and Translational Research, 8(6), 1644-1657. [CrossRef]
  • 63. Bali, D.E., Osman, M.A., Maghraby, G.M.E. (2016). Enhancement of dissolution rate and intestinal stability of clopidogrel hydrogen sulfate. European Journal of Drug Metabolism and Pharmacokinetics, 41(6), 807-818. [CrossRef]
  • 64. Hanada, M., Jermain, S.V., Williams, R.O. (2018). Enhanced dissolution of a porous carrier-containing ternary amorphous solid dispersion system prepared by a hot melt method. Journal of Pharmaceutical Sciences, 107(1), 362-371. [CrossRef]
  • 65. Costa, P., Sousa Lobo, J. M. (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 13(2), 123-133. [CrossRef]
  • 66. Yılmaz Usta, D., Demirtaş, Ö., Ökçelik, C., Uslu, A., Teksı̇n, Z. Ş. (2018). Evaluation of in vitro dissolution characteristics of flurbiprofen, a BCS class IIa drug. FABAD Journal of Pharmaceutical Sciences, 43(2), 27-34.
  • 67. Paarakh, M.P., Jose, P.A., Setty, C.M., PeterChristopher, G.V. (2023). Release kinetics-concepts and applications. International Journal of Pharmacy Research & Technology, 8(1), 12-20.
Toplam 67 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İlaç Dağıtım Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Hilal Baş 0000-0002-1622-9622

Fırat Yerlikaya 0000-0003-4648-3258

Füsun Acartürk 0000-0001-9515-750X

Erken Görünüm Tarihi 2 Mayıs 2025
Yayımlanma Tarihi 19 Mayıs 2025
Gönderilme Tarihi 17 Ekim 2024
Kabul Tarihi 9 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 49 Sayı: 2

Kaynak Göster

APA Baş, H., Yerlikaya, F., & Acartürk, F. (2025). TETRABENAZİNİN BAZİK ORTAMDAKİ ÇÖZÜNME ÖZELLİKLERİNİN KATI DİSPERSİYON TEKNOLOJİSİ İLE ARTIRILMASI. Journal of Faculty of Pharmacy of Ankara University, 49(2), 241-263. https://doi.org/10.33483/jfpau.1568365
AMA Baş H, Yerlikaya F, Acartürk F. TETRABENAZİNİN BAZİK ORTAMDAKİ ÇÖZÜNME ÖZELLİKLERİNİN KATI DİSPERSİYON TEKNOLOJİSİ İLE ARTIRILMASI. Ankara Ecz. Fak. Derg. Mayıs 2025;49(2):241-263. doi:10.33483/jfpau.1568365
Chicago Baş, Hilal, Fırat Yerlikaya, ve Füsun Acartürk. “TETRABENAZİNİN BAZİK ORTAMDAKİ ÇÖZÜNME ÖZELLİKLERİNİN KATI DİSPERSİYON TEKNOLOJİSİ İLE ARTIRILMASI”. Journal of Faculty of Pharmacy of Ankara University 49, sy. 2 (Mayıs 2025): 241-63. https://doi.org/10.33483/jfpau.1568365.
EndNote Baş H, Yerlikaya F, Acartürk F (01 Mayıs 2025) TETRABENAZİNİN BAZİK ORTAMDAKİ ÇÖZÜNME ÖZELLİKLERİNİN KATI DİSPERSİYON TEKNOLOJİSİ İLE ARTIRILMASI. Journal of Faculty of Pharmacy of Ankara University 49 2 241–263.
IEEE H. Baş, F. Yerlikaya, ve F. Acartürk, “TETRABENAZİNİN BAZİK ORTAMDAKİ ÇÖZÜNME ÖZELLİKLERİNİN KATI DİSPERSİYON TEKNOLOJİSİ İLE ARTIRILMASI”, Ankara Ecz. Fak. Derg., c. 49, sy. 2, ss. 241–263, 2025, doi: 10.33483/jfpau.1568365.
ISNAD Baş, Hilal vd. “TETRABENAZİNİN BAZİK ORTAMDAKİ ÇÖZÜNME ÖZELLİKLERİNİN KATI DİSPERSİYON TEKNOLOJİSİ İLE ARTIRILMASI”. Journal of Faculty of Pharmacy of Ankara University 49/2 (Mayıs 2025), 241-263. https://doi.org/10.33483/jfpau.1568365.
JAMA Baş H, Yerlikaya F, Acartürk F. TETRABENAZİNİN BAZİK ORTAMDAKİ ÇÖZÜNME ÖZELLİKLERİNİN KATI DİSPERSİYON TEKNOLOJİSİ İLE ARTIRILMASI. Ankara Ecz. Fak. Derg. 2025;49:241–263.
MLA Baş, Hilal vd. “TETRABENAZİNİN BAZİK ORTAMDAKİ ÇÖZÜNME ÖZELLİKLERİNİN KATI DİSPERSİYON TEKNOLOJİSİ İLE ARTIRILMASI”. Journal of Faculty of Pharmacy of Ankara University, c. 49, sy. 2, 2025, ss. 241-63, doi:10.33483/jfpau.1568365.
Vancouver Baş H, Yerlikaya F, Acartürk F. TETRABENAZİNİN BAZİK ORTAMDAKİ ÇÖZÜNME ÖZELLİKLERİNİN KATI DİSPERSİYON TEKNOLOJİSİ İLE ARTIRILMASI. Ankara Ecz. Fak. Derg. 2025;49(2):241-63.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.