İZOLE MİTOKONDRİLERDE HOUSEKEEPING GEN STABİLİZASYONUNUN ANALİZİ
Yıl 2025,
Cilt: 49 Sayı: 2, 320 - 328, 19.05.2025
Öner Ülger
,
Tuğba Fatsa
,
Sema Oren
,
Mualla Pınar Elçi
Öz
Amaç: Mitokondri izolasyonu metodu mitokondriyal süreçlerin araştırılmasında kullanılır. Bu araştırmalarda gen transkripsiyon seviyelerinin RT-qPCR ölçümü sıklıkla kullanılmaktadır. Bu yöntemde sonuçların normalizasyonunda kullanılan housekeeping genlerin stabil olması önemlidir. Bu çalışma, izole mitokondride iki housekeeping genden hangisinin daha stabil olduğunu belirlemeyi amaçlamıştır.
Gereç ve Yöntem: Mitokondriler FHC hücrelerinden izole edilmiştir. İzole mitokondrilerin membran bütünlüğü ve fonksiyonelliği mitotracker ve JC-1 boyamaları ile ROS oranı flow sitometriyle ölçülmüştür. RT-qPCR analizinde housekeeping gen olarak GAPDH ve β-aktin kullanılmış, gen stabilitesi ise ΔCq metodu ve yüzde varyans katsayısına göre hesaplanmıştır. Gen validasyonu için CAT ve SOD1 transkripsiyonları 2-ΔΔCq yöntemiyle hesaplanmıştır. Bu genler oksidatif stres durumunun tespit edilmiş olması nedeniyle seçilmiştir.
Sonuç ve Tartışma: İzole mitokondrilerin membran bütünlüğünü koruduğu görülmüş, membran potansiyeli oranı ise %91 olarak bulunmuştur. ROS oranı %1.6 olarak ölçülmüştür ve buna göre antioksidan enzim düzeyini etkileyecek bir oksidatif stres olmadığı değerlendirilmiştir. ΔCq değerleri β-aktin için 4.54±0.06 ve GAPDH için 0.69±0.16 iken, yüzde varyans katsayısı sırasıyla %1,33 ve %23.95 idi. CAT transkripsiyon seviyesi, β-actin'e göre 25.7±2.6 ve GAPDH'a göre 1.8±0.33 iken, SOD1 seviyeleri β-aktin’e göre 70.1±12.7 ve GAPDH'a göre 4.8±0.6 olarak hesaplanmıştır. Sonuçlara göre β-aktin’in GAPDH’a göre daha stabil olabileceği kanısına varılmıştır. Analizlerde housekeeping gen seçiminin sonuçlar üzerindeki potansiyel etkisi dikkate alınmalıdır.
Kaynakça
- 1. Zhou, D., Zhong, S., Han, X., Liu, D., Fang, H., Wang, Y. (2023). Protocol for mitochondrial isolation and sub-cellular localization assay for mitochondrial proteins. STAR Protocols, 4(1), 102088. [CrossRef]
- 2. Harrington, J.S., Ryter, S.W., Plataki, M., Price, D.R., Choi, A.M.K. (2023). Mitochondria in health, disease, and aging. Physiological Reviews, 103(4), 2349-2422. [CrossRef]
- 3. Suh, J., Lee, Y.-S. (2024). Mitochondria as secretory organelles and therapeutic cargos. Experimental & Molecular Medicine, 56(1), 66-85. [CrossRef]
- 4. Kim, J.S., Lee, S., Kim, W.K., Han, B.S. (2023). Mitochondrial transplantation: An overview of a promising therapeutic approach. BMB Reports, 56(9), 488-495. [CrossRef]
- 5. Merheb, M., Matar, R., Hodeify, R., Siddiqui, S.S., Vazhappilly, C.G., Marton, J., Azharuddin, S., Al Zouabi, H. (2019). Mitochondrial DNA, a powerful tool to decipher ancient human civilization from domestication to music, and to uncover historical murder cases. Cells, 8(5). [CrossRef]
- 6. Nakajima, H., Itakura, M., Kubo, T., Kaneshige, A., Harada, N., Izawa, T., Azuma, Y.T., Kuwamura, M., Yamaji, R., Takeuchi, T. (2017). Glyceraldehyde-3-phosphate dehydrogenase (gapdh) aggregation causes mitochondrial dysfunction during oxidative stress-induced cell death. Journal of Biological Chemistry, 292(11), 4727-4742. [CrossRef]
- 7. Michaud, M., Maréchal-Drouard, L., Duchêne, A.M. (2014). Targeting of cytosolic mRNA to mitochondria: Naked RNA can bind to the mitochondrial surface. Biochimie, 100, 159-166. [CrossRef]
- 8. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3(7), research0034.0031. [CrossRef]
- 9. Joshi, C.J., Ke, W., Drangowska-Way, A., O'Rourke, E. J., Lewis, N.E. (2022). What are housekeeping genes? PLOS Computational Biology, 18(7), e1010295. [CrossRef]
- 10. Maleki, F., Rabbani, S., Shirkoohi, R., Rezaei, M. (2023). Allogeneic mitochondrial transplantation ameliorates cardiac dysfunction due to doxorubicin: An in vivo study. Biomedicine & Pharmacotherapy, 168, 115651. [CrossRef]
- 11. Kubat, G.B., Kartal, Y., Atalay, O., Ulger, O., Ekinci, O., Celik, E., Safali, M., Urkan, M., Karahan, S., Ozler, M., Cicek, Z., Budak, M.T. (2021). Investigation of the effect of isolated mitochondria transplantation on renal ischemia-reperfusion injury in rats. Toxicology and Applied Pharmacology, 433, 115780. [CrossRef]
- 12. Silver, N., Best, S., Jiang, J., Thein, S. L. (2006). Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Molecular Biology, 7(1), 33. [CrossRef]
- 13. Sundaram, V.K., Sampathkumar, N.K., Massaad, C., Grenier, J. (2019). Optimal use of statistical methods to validate reference gene stability in longitudinal studies. PLoS One, 14(7), e0219440. [CrossRef]
- 14. Vijayakumar, S., Sakuntala, M. (2024). Validation of reference gene stability for normalization of RT-qPCR in Phytophthora capsici Leonian during its interaction with Piper nigrum L. Scientific Reports, 14(1), 7331. [CrossRef]
- 15. Sharungbam, G.D., Schwager, C., Chiblak, S., Brons, S., Hlatky, L., Haberer, T., Debus, J., Abdollahi, A. (2012). Identification of stable endogenous control genes for transcriptional profiling of photon, proton and carbon-ion irradiated cells. Radiation Oncology, 7(1), 70. [CrossRef]
- 16. Rossi, A., Asthana, A., Riganti, C., Sedrakyan, S., Byers, L.N., Robertson, J., Senger, R.S., Montali, F., Grange, C., Dalmasso, A., Porporato, P.E., Palles, C., Thornton, M.E., Da Sacco, S., Perin, L., Ahn, B., McCully, J., Orlando, G., Bussolati, B. (2023). Mitochondria transplantation mitigates damage in an in vitro model of renal tubular ınjury and in an ex vivo model of DCD renal transplantation. Annals of Surgery, 278(6), e1313-e1326. [CrossRef]
- 17. Lee, S.E., Kim, I.H., Kang, Y.C., Kim, Y., Yu, S.H., Yeo, J.S., Kwon, I., Lim, J.H., Kim, J.H., Han, K., Kim, S.H., Kim, C.H. (2024). Mitochondrial transplantation attenuates lipopolysaccharide-induced acute respiratory distress syndrome. BMC Pulmonary Medicine, 24(1), 477. [CrossRef]
- 18. Kim, S., Noh, J.H., Lee, M.J., Park, Y.J., Kim, B.M., Kim, Y.S., Hwang, S., Park, C., Kim, K. (2023). Effects of mitochondrial transplantation on transcriptomics in a polymicrobial sepsis model. International Journal of Molecular Sciences, 24(20), 15326. [CrossRef]
- 19. Bodenstein, D.F., Powlowski, P., Zachos, K.A., El Soufi El Sabbagh, D., Jeong, H., Attisano, L., Edgar, L., Wallace, D.C., Andreazza, A.C. (2023). Optimization of differential filtration-based mitochondrial isolation for mitochondrial transplant to cerebral organoids. Stem Cell Research & Therapy, 14(1), 202. [CrossRef]
- 20. Cinar, M.U., Islam, M.A., Uddin, M.J., Tholen, E., Tesfaye, D., Looft, C., Schellander, K. (2012). Evaluation of suitable reference genes for gene expression studies in porcine alveolar macrophages in response to LPS and LTA. BMC Research Notes, 5, 107. [CrossRef]
- 21. Geng, W.Y., Yao, F.J., Tang, T., Shi, S.S. (2019). Evaluation of the expression stability of β-actin under bacterial infection in Macrobrachium nipponense. Molecular Biology Reports, 46(1), 309-315. [CrossRef]
- 22. Tristan, C., Shahani, N., Sedlak, T.W., Sawa, A. (2011). The diverse functions of GAPDH: Views from different subcellular compartments. Cellular Signalling, 23(2), 317-323. [CrossRef]
- 23. Olejárová, S., Horváth, D., Huntošová, V. (2024). The remodulation of actin bundles during the stimulation of mitochondria in adult human fibroblasts in response to light. Pharmaceutics, 16(1), 20. [CrossRef]
- 24. Tang, P.A., Duan, J.Y., Wu, H.J., Ju, X.R., Yuan, M.L. (2017). Reference gene selection to determine differences in mitochondrial gene expressions in phosphine-susceptible and phosphine-resistant strains of Cryptolestes ferrugineus, using qRT-PCR. Scientific reports, 7(1), 7047. [CrossRef]
- 25. Van Acker, S.I., Van Acker, Z.P., Haagdorens, M., Pintelon, I., Koppen, C., Zakaria, N. (2019). Selecting appropriate reference genes for quantitative real-time polymerase chain reaction studies in isolated and cultured ocular surface epithelia. Scientific Reports, 9(1), 19631. [CrossRef]
- 26. Játiva, S., Calle, P., Torrico, S., Muñoz, Á., García, M., Martinez, I., Sola, A., Hotter, G. (2022). Mitochondrial transplantation enhances phagocytic function and decreases lipid accumulation in foam cell macrophages. Biomedicines, 10(2), 329. [CrossRef]
- 27. Hwang, S.Y., Lee, D., Lee, G., Ahn, J., Lee, Y.G., Koo, H.S., Kang, Y.J. (2024). Endometrial organoids: A reservoir of functional mitochondria for uterine repair. Theranostics, 14(3), 954-972. [CrossRef]
- 28. Wu, H.C., Fan, X., Hu, C.H., Chao, Y.C., Liu, C.S., Chang, J.C., Sen, Y. (2020). Comparison of mitochondrial transplantation by using a stamp-type multineedle injector and platelet-rich plasma therapy for hair aging in naturally aging mice. Biomedicine & Pharmacotherapy, 130, 110520. [CrossRef]
ANALYSIS OF HOUSEKEEPING GENE STABILIZATION IN ISOLATED MITOCHONDRIA
Yıl 2025,
Cilt: 49 Sayı: 2, 320 - 328, 19.05.2025
Öner Ülger
,
Tuğba Fatsa
,
Sema Oren
,
Mualla Pınar Elçi
Öz
Objective: The mitochondria isolation method is used to investigate mitochondrial processes. RT-qPCR measurement of gene transcription levels is frequently used in these studies. In this method, it is important that the housekeeping genes used in the normalisation of the results are stable. The study aimed to determine which of two housekeeping genes is more stable in isolated mitochondria.
Material and Method: Mitochondria were isolated from FHC cells. Membrane integrity and functionality were measured by mitotracker and JC-1 stainings and ROS ratio by flow cytometry. Housekeeping genes GAPDH and β-actin were used in RT-qPCR, and gene stability was calculated using ΔCq method and percentage coefficient of variance. For gene validation, CAT and SOD1 transcriptions were calculated by the 2-ΔΔCq method. These genes were selected because oxidative stress status has been detected.
Result and Discussion: Isolated mitochondria membrane integrity was preserved and the membrane potential ratio was found 91%. ROS ratio was 1.6% and there was no oxidative stress that would affect the antioxidant enzymes levels. ΔCq values were 4.54±0.06 for β-actin and 0.69±0.16 for GAPDH, with 1.33% and 23.95% percentage coefficient of variance respectively. CAT transcription levels were 25.7±2.6 and 1.8±0.33, while SOD1 levels were 70.1±12.7 and 4.8±0.6 correspondingly. It was concluded that β-actin may be more stable than GAPDH. The potential impact of housekeeping gene selection on outcomes should be considered.
Kaynakça
- 1. Zhou, D., Zhong, S., Han, X., Liu, D., Fang, H., Wang, Y. (2023). Protocol for mitochondrial isolation and sub-cellular localization assay for mitochondrial proteins. STAR Protocols, 4(1), 102088. [CrossRef]
- 2. Harrington, J.S., Ryter, S.W., Plataki, M., Price, D.R., Choi, A.M.K. (2023). Mitochondria in health, disease, and aging. Physiological Reviews, 103(4), 2349-2422. [CrossRef]
- 3. Suh, J., Lee, Y.-S. (2024). Mitochondria as secretory organelles and therapeutic cargos. Experimental & Molecular Medicine, 56(1), 66-85. [CrossRef]
- 4. Kim, J.S., Lee, S., Kim, W.K., Han, B.S. (2023). Mitochondrial transplantation: An overview of a promising therapeutic approach. BMB Reports, 56(9), 488-495. [CrossRef]
- 5. Merheb, M., Matar, R., Hodeify, R., Siddiqui, S.S., Vazhappilly, C.G., Marton, J., Azharuddin, S., Al Zouabi, H. (2019). Mitochondrial DNA, a powerful tool to decipher ancient human civilization from domestication to music, and to uncover historical murder cases. Cells, 8(5). [CrossRef]
- 6. Nakajima, H., Itakura, M., Kubo, T., Kaneshige, A., Harada, N., Izawa, T., Azuma, Y.T., Kuwamura, M., Yamaji, R., Takeuchi, T. (2017). Glyceraldehyde-3-phosphate dehydrogenase (gapdh) aggregation causes mitochondrial dysfunction during oxidative stress-induced cell death. Journal of Biological Chemistry, 292(11), 4727-4742. [CrossRef]
- 7. Michaud, M., Maréchal-Drouard, L., Duchêne, A.M. (2014). Targeting of cytosolic mRNA to mitochondria: Naked RNA can bind to the mitochondrial surface. Biochimie, 100, 159-166. [CrossRef]
- 8. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3(7), research0034.0031. [CrossRef]
- 9. Joshi, C.J., Ke, W., Drangowska-Way, A., O'Rourke, E. J., Lewis, N.E. (2022). What are housekeeping genes? PLOS Computational Biology, 18(7), e1010295. [CrossRef]
- 10. Maleki, F., Rabbani, S., Shirkoohi, R., Rezaei, M. (2023). Allogeneic mitochondrial transplantation ameliorates cardiac dysfunction due to doxorubicin: An in vivo study. Biomedicine & Pharmacotherapy, 168, 115651. [CrossRef]
- 11. Kubat, G.B., Kartal, Y., Atalay, O., Ulger, O., Ekinci, O., Celik, E., Safali, M., Urkan, M., Karahan, S., Ozler, M., Cicek, Z., Budak, M.T. (2021). Investigation of the effect of isolated mitochondria transplantation on renal ischemia-reperfusion injury in rats. Toxicology and Applied Pharmacology, 433, 115780. [CrossRef]
- 12. Silver, N., Best, S., Jiang, J., Thein, S. L. (2006). Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Molecular Biology, 7(1), 33. [CrossRef]
- 13. Sundaram, V.K., Sampathkumar, N.K., Massaad, C., Grenier, J. (2019). Optimal use of statistical methods to validate reference gene stability in longitudinal studies. PLoS One, 14(7), e0219440. [CrossRef]
- 14. Vijayakumar, S., Sakuntala, M. (2024). Validation of reference gene stability for normalization of RT-qPCR in Phytophthora capsici Leonian during its interaction with Piper nigrum L. Scientific Reports, 14(1), 7331. [CrossRef]
- 15. Sharungbam, G.D., Schwager, C., Chiblak, S., Brons, S., Hlatky, L., Haberer, T., Debus, J., Abdollahi, A. (2012). Identification of stable endogenous control genes for transcriptional profiling of photon, proton and carbon-ion irradiated cells. Radiation Oncology, 7(1), 70. [CrossRef]
- 16. Rossi, A., Asthana, A., Riganti, C., Sedrakyan, S., Byers, L.N., Robertson, J., Senger, R.S., Montali, F., Grange, C., Dalmasso, A., Porporato, P.E., Palles, C., Thornton, M.E., Da Sacco, S., Perin, L., Ahn, B., McCully, J., Orlando, G., Bussolati, B. (2023). Mitochondria transplantation mitigates damage in an in vitro model of renal tubular ınjury and in an ex vivo model of DCD renal transplantation. Annals of Surgery, 278(6), e1313-e1326. [CrossRef]
- 17. Lee, S.E., Kim, I.H., Kang, Y.C., Kim, Y., Yu, S.H., Yeo, J.S., Kwon, I., Lim, J.H., Kim, J.H., Han, K., Kim, S.H., Kim, C.H. (2024). Mitochondrial transplantation attenuates lipopolysaccharide-induced acute respiratory distress syndrome. BMC Pulmonary Medicine, 24(1), 477. [CrossRef]
- 18. Kim, S., Noh, J.H., Lee, M.J., Park, Y.J., Kim, B.M., Kim, Y.S., Hwang, S., Park, C., Kim, K. (2023). Effects of mitochondrial transplantation on transcriptomics in a polymicrobial sepsis model. International Journal of Molecular Sciences, 24(20), 15326. [CrossRef]
- 19. Bodenstein, D.F., Powlowski, P., Zachos, K.A., El Soufi El Sabbagh, D., Jeong, H., Attisano, L., Edgar, L., Wallace, D.C., Andreazza, A.C. (2023). Optimization of differential filtration-based mitochondrial isolation for mitochondrial transplant to cerebral organoids. Stem Cell Research & Therapy, 14(1), 202. [CrossRef]
- 20. Cinar, M.U., Islam, M.A., Uddin, M.J., Tholen, E., Tesfaye, D., Looft, C., Schellander, K. (2012). Evaluation of suitable reference genes for gene expression studies in porcine alveolar macrophages in response to LPS and LTA. BMC Research Notes, 5, 107. [CrossRef]
- 21. Geng, W.Y., Yao, F.J., Tang, T., Shi, S.S. (2019). Evaluation of the expression stability of β-actin under bacterial infection in Macrobrachium nipponense. Molecular Biology Reports, 46(1), 309-315. [CrossRef]
- 22. Tristan, C., Shahani, N., Sedlak, T.W., Sawa, A. (2011). The diverse functions of GAPDH: Views from different subcellular compartments. Cellular Signalling, 23(2), 317-323. [CrossRef]
- 23. Olejárová, S., Horváth, D., Huntošová, V. (2024). The remodulation of actin bundles during the stimulation of mitochondria in adult human fibroblasts in response to light. Pharmaceutics, 16(1), 20. [CrossRef]
- 24. Tang, P.A., Duan, J.Y., Wu, H.J., Ju, X.R., Yuan, M.L. (2017). Reference gene selection to determine differences in mitochondrial gene expressions in phosphine-susceptible and phosphine-resistant strains of Cryptolestes ferrugineus, using qRT-PCR. Scientific reports, 7(1), 7047. [CrossRef]
- 25. Van Acker, S.I., Van Acker, Z.P., Haagdorens, M., Pintelon, I., Koppen, C., Zakaria, N. (2019). Selecting appropriate reference genes for quantitative real-time polymerase chain reaction studies in isolated and cultured ocular surface epithelia. Scientific Reports, 9(1), 19631. [CrossRef]
- 26. Játiva, S., Calle, P., Torrico, S., Muñoz, Á., García, M., Martinez, I., Sola, A., Hotter, G. (2022). Mitochondrial transplantation enhances phagocytic function and decreases lipid accumulation in foam cell macrophages. Biomedicines, 10(2), 329. [CrossRef]
- 27. Hwang, S.Y., Lee, D., Lee, G., Ahn, J., Lee, Y.G., Koo, H.S., Kang, Y.J. (2024). Endometrial organoids: A reservoir of functional mitochondria for uterine repair. Theranostics, 14(3), 954-972. [CrossRef]
- 28. Wu, H.C., Fan, X., Hu, C.H., Chao, Y.C., Liu, C.S., Chang, J.C., Sen, Y. (2020). Comparison of mitochondrial transplantation by using a stamp-type multineedle injector and platelet-rich plasma therapy for hair aging in naturally aging mice. Biomedicine & Pharmacotherapy, 130, 110520. [CrossRef]