Research Article
BibTex RIS Cite
Year 2023, Volume: 10 Issue: 1, 11 - 32, 30.03.2023

Abstract

References

  • Allen, P. J., Chang, R., Gorrall, B. K., Waggenspack, L., Fukuda, E., Little, T. D., & Noam, G. G. (2019). From quality to outcomes: a national study of afterschool STEM programming. International Journal of STEM Education, 6(1), 1-21. https://doi.org/10.1186/s40594-019-0191-2
  • Boeije, H. (2009). Analysis in qualitative research. Sage publications.
  • Banko, W., Grant, M. L., Jabot, M. E., McCormack, A. J., & O'Brien, T. (2013). Science for the next generation: Preparing for the new standards. National Science Teachers Association Press.
  • Bergold, S., Hastall, M. R., & Steinmayr, R. (2021). Do mass media shape stereotypes about intellectually gifted individuals? Two experiments on stigmatization effects from biased newspaper reports. Gifted Child Quarterly, 65(1), 75-94. https://doi.org/10.1177/0016986220969393
  • Breedlove, L. (2021). Characteristics of gifted learners. In J. L. Roberts, T. F. Inman, & J. H. Robins (Eds.), Introduction to gifted education (pp. 55-75). Routledge. https://doi.org/10.4324/9781003235859
  • Bronfenbrenner U. (1979). Ecology of human development. Harvard University Press.
  • Bronfenbrenner, U. (1994). Ecological models of human development. In M. Gauvian & M. Cole (Eds.), Readings on the development of children (pp. 37-43). Freeman. https://impactofspecialneeds.weebly.com/uploads/3/4/1/9/3419723/ ecologial_models_of_human_development.pdf
  • Bronfenbrenner, U. (1995). Developmental ecology through space and time: A future perspective. In P. Moen, G. H. Elder, Jr., & K. Lüscher (Eds.), Examining lives in context: Perspectives on the ecology of human development (pp. 619-647). American Psychological Association. https://doi.org/10.1037/10176-018
  • Bronfenbrenner, U. (1999). Environments in developmental perspective: Theoretical and operational models. In S. L. Friedman & T. D. Wachs (Eds.), Measuring environment across the life span: Emerging methods and concepts (pp. 3-28). American Psychological Association. https://doi.org/10.1037/10317-001
  • Bronfenbrenner, U., & Ceci, S. J. (1994). Nature-nurture reconceptualized in developmental perspective: A bioecological model. Psychological Review, 101(4), 568-586. https://doi.org/10.1037/0033-295X.101.4.568
  • Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education in P‐12 classrooms. Journal of Engineering Education, 97(3), 369-387. https://doi.org/10.1002/j.2168-9830.2008.tb00985.x
  • Brubacher, M. R., & Silinda, F. T. (2019). Enjoyment and not competence predicts academic persistence for distance education students. The International Review of Research in Open and Distributed Learning, 20(3), 166-179. https://doi.org/10.19173/irrodl.v20i4.4325
  • Bryan, L. A., Moore, T. J., Johnson, C. C., & Roehrig, G. H. (2016). Integrated STEM education. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM road map: A framework for integrated STEM education (pp. 23–37). Routledge.
  • Cappelli, C. J., Boice, K. L., & Alemdar, M. (2019). Evaluating university-based summer STEM programs: Challenges, successes, and lessons learned. Journal of STEM Outreach, 2(1), 1-12. https://doi.org/10.15695/jstem/v2i1.13
  • Chittum, J. R., Jones, B. D., Akalin, S., & Schram, Á. B. (2017). The effects of an afterschool STEM program on students' motivation and engagement. International Journal of STEM Education, 4(1), 1-16. https://doi.org/10.1186/s40594-017-0065-4
  • Chowdhury, M. A. (2016). Gifted education in science and chemistry: Perspectives and insights into teaching, pedagogies, assessments, and psychosocial skills development. Journal for the Education of Gifted Young Scientists, 4(1), 53-66. https://dergipark.org.tr/en/pub/jegys/issue/37319/430646
  • Chowkase, A. A. (2021). A bioecological systems view of school experiences of high-ability students from rural India. Gifted Child Quarterly. Advance online publication. https://doi.org/10.1177/00169862211030311
  • Clasessens, A., Duncan, G., & Engel, M. (2009). Kindergarten skills and fifth grade achievement: Evidence from the ECLS-K. Economics of Education Review, 28(4), 415–427.
  • Crawford, J., Henderson, K. B., Rudolph, J., Malkawi, B., Glowatz, M., Burton, R., Magni, P. A., & Lam, S. (2020). COVID-19: 20 countries' higher education intra-period digital pedagogy responses. Journal of Applied Learning & Teaching, 3(1), 1–20, https://doi.org/10.37074/jalt.2020.3.1.7
  • Creswell, J. W., & Clark, V. L. P. (2017). Designing and conducting mixed methods research (3rd ed.). Sage publications.
  • Dabney, K. P., Tai, R. H., Almarode, J. T., Miller-Friedmann, J. L., Sonnert, G., Sadler, P. M., & Hazari, Z. (2012). Out-of-school time science activities and their association with career interest in STEM. International Journal of Science Education, 2(1), 63–79. https://doi.org/10.1080/21548455.2011.629455
  • Dey, I. (2003). Qualitative data analysis: A user friendly guide for social scientists. Routledge.
  • Dubosarsky, M., John, M. S., Anggoro, F., Wunnava, S., & Celik, U. (2018). Seeds of STEM: The development of a problem-based STEM curriculum for early childhood classrooms. In L. D. English & T. J. Moore (Eds.), Early engineering learning (pp. 249-269). Springer.
  • Eccles, J. S., Arberton, A., Buchanan, C. M., Janis, J., Flanagan, C., Harold, R., MacIver, D., Midgley, C., Reuman, D. (1993). School and family effects on the ontogeny of children's interests, self-perceptions, and activity choices. In J. E. Jacobs (Ed.), Nebraska Symposium on Motivation, 1992: Developmental perspectives on motivation (pp. 145–208). University of Nebraska Press.
  • English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3(1), 1-8. https://doi.org/10.1186/s40594-016-0036-1
  • Elsen-Rooney, M. (2020, January 7). NYC Education Dept. okays Brooklyn elementary school's plan to scrap separate 'Gifted' courses. New York Daily News. https://www.nydailynews.com/new-york/education/ny-gifted-talented-elementary-brooklyn-20200107-sik5qabkkbdehc33jekqrulgqy-story.html
  • Eshach, H., & Fried, M. N. (2005). Should science be taught in early childhood? Journal of Science Education and Technology, 14(3), 315-336. https://link.springer.com/content/pdf/10.1007/s10956-005-7198-9.pdf
  • Field, A. (2009). Discovering statistics using SPSS. Sage.
  • Fisher, R. J., & Katz, J. E. (2000). Social‐desirability bias and the validity of self‐reported values. Psychology & Marketing, 17(2), 105-120. https://doi.org/10.1002/(SICI)1520-6793(200002)17:2<105::AID-MAR3>3.0.CO;2-9
  • French, L. (2004). Science as the center of a coherent, integrated early childhood curriculum. Early Childhood Research Quarterly, 19(1), 138-149. https://doi.org/10.1016/j.ecresq.2004.01.004
  • Furfarro, H., & Bazzaz, D. (2019, October 22). What's next for Seattle schools' gifted programs? Here's what we know so far. The Seattle Times. https://www.seattletimes.com/
  • Ghaderizefreh, S., & Hoover, M. L. (2018). Student Satisfaction with Online Learning in a Blended Course. International Journal for Digital Society, 9(3), 1393–1398. https://doi.org/10.20533/ijds.2040.2570.2018.0172
  • Golle, J., Zettler, I., Rose, N., Trautwein, U., Hasselhorn, M., & Nagengast, B. (2018). Effectiveness of a "grass roots" statewide enrichment program for gifted elementary school children. Journal of Research on Educational Effectiveness, 11(3), 375-408. https://doi.org/10.1080/19345747.2017.1402396
  • Goodall, J., & Montgomery, C. (2014). Parental involvement to parental engagement: A continuum. Educational Review, 66(4), 399-410. https://doi.org/10.1080/00131911.2013.781576
  • Grissom, J. A., Redding, C., & Bleiberg, J. F. (2019). Money over merit? Socioeconomic gaps in receipt of gifted services. Harvard Educational Review, 89(3), 337–369. https://doi.org/10.17763/1943-5045-89.3.337
  • Gubbels, J., Segers, E., & Verhoeven, L. (2014). Cognitive, socio- emotional, and attitudinal effects of a triarchic enrichment program for gifted children. Journal for the Education of the Gifted, 37(4), 378-397. https://doi.org/10.1177/0162353214552565
  • Hayes, N., O'Toole, L., & Halpenny, A. M. (2017). Introducing Bronfenbrenner: A guide for practitioners and students in early years education. Routledge.
  • Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
  • Jensen, F., & Sjaastad, J. (2013). A Norwegian out-of-school mathematics project's influence on secondary students' STEM motivation. International Journal of Science and Mathematics Education, 11(6), 1437–1461. https://doi.org/10.1007/s10763-013-9401-4
  • Jolly, J. L., & Matthews, M. S. (2018). The Chronicles of homeschooling gifted learners. Journal of School Choice, 12(1), 123–145. https://doi.org/10.1080/15582159.2017.1354644
  • Jungert, T., Levine, S., & Koestner, R. (2020). Examining how parent and teacher enthusiasm influences motivation and achievement in STEM. Journal of Educational Research, 113(4), 275–282. https://doi.org/10.1080/00220671.2020.1806015
  • Katz, L. G. (2010). STEM in the early years. Early Childhood Research and Practice, 12(2), 11-19. https://www.olaweb.org/assets/CSD/CSDFall2013BrainSTEM/stem%20in%20the%20early%20years%20-%20katz%20article.pdf
  • Kim, M. (2016). A meta-analysis of the effects of enrichment programs on gifted students. Gifted Child Quarterly, 60(2), 102-116. https://doi.org/10.1177/0016986216630607
  • Leech, N. L., & Onwuegbuzie, A. J. (2009). A typology of mixed methods research designs. Quality & Quantity, 43(2), 265-275. https://doi.org/10.1007/s11135-007-9105-3
  • Lippard C.N., Riley K.L., Lamm M.H. (2018) Encouraging the development of engineering habits of mind in prekindergarten learners. In L. D. English & T. J. Moore (Eds.), Early engineering learning (pp.19-36). Springer. https://doi.org/10.1007/978-981-10-8621-2_3
  • Litzler, E., Samuelson, C. C., & Lorah, J. A. (2014). Breaking it down: Engineering student STEM confidence at the intersection of race/ethnicity and gender. Research in Higher Education, 55(8), 810–832. https://doi.org/10.1007/s11162-014-9333-z
  • Mantzicopoulos, P., French, B. F., & Patrick, H. (2019). The quality of mathematics instruction in kindergarten: Associations with students' achievement and motivation. The Elementary School Journal, 119(4), 651-676. https://www.journals.uchicago.edu/doi/pdf/10.1086/703176
  • Marsh, H. W., Hau, K. T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler's (1999) findings. Structural Equation Modeling, 11(3), 320-341. https://doi.org/10.1207/s15328007sem1103_2
  • Matthews, M. S., & Jolly, J. L. (2018). The learning environment at home. In J. L. Roberts, T. F. Inman, J. H. Robins (Eds.), Introduction to gifted education (pp.197-210). Prufrock Press.
  • McClure, E. R., Guernsey, L., Clements, D. H., Bales, S. N., Nichols, J., Kendall-Taylor, N., & Levine, M. H. (2017). STEM starts early: Grounding science, technology, engineering, and math education in early childhood. Joan Ganz Cooney Center at Sesame Workshop New America. https://files.eric.ed.gov/fulltext/ED574402.pdf
  • Miller, R., & Gentry, M. (2010). Developing talents among high-potential students from low-income families in an out-of-school enrichment program. Journal of Advanced Academics, 21(4), 594-627. https://doi.org/10.1177/1932202X1002100403
  • Mohd Zahidi, A , Sy Ing, O , Yusof, R , Kanapathy, S , Ismail, M , You, H. (2021). Effect of science camp for enhancing STEM skills of gifted young scientists. Journal for the Education of Gifted Young Scientists, 9(1), 15-26. https://doi.org/10.17478/jegys.821700
  • Moore T.J., Tank K.M., English L. (2018) Engineering in the early grades: Harnessing children's natural ways of thinking. In L. D. English & T. J. Moore (Eds.), Early engineering learning (pp.9-18). Springer. https://doi.org/10.1007/978-981-10-8621-2_2
  • Mun, R. U., & Hertzog, N. B. (2018). Teaching and learning in STEM enrichment spaces: From doing math to thinking mathematically. Roeper Review, 40(2), 121-129. https://doi.org/10.1080/02783193.2018.1434713
  • Jackson, R., & King, M. P. (2016). Increasing Students' Access to Opportunities in STEM by Effectively Engaging Families. National Parent Teachers Association.
  • Olszewski‐Kubilius, P., & Lee, S. Y. (2004). Parent perceptions of the effects of the Saturday enrichment program on gifted students' talent development. Roeper Review, 26(3), 156-165. https://doi.org/10.1080/02783190409554261
  • Riley, T., & White, V. (2016). Developing a sense of belonging through engagement with like-minded peers: A matter of equity. New Zealand Journal of Educational Studies, 51(2), 211-225. https://doi.org/10.1007/s40841-016-0065-9
  • Saldaña, J. (2015). The coding manual for qualitative researchers (3rd ed.). Sage.
  • Sastre-Riba, S. (2013). High intellectual ability: Extracurricular enrichment and cognitive management. Journal for the Education of the Gifted, 36(1), 119-132. https://doi.org/10.1177/0162353212472407
  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464. http://www.jstor.org/stable/2958889
  • Shi, J., Tao, T., Chen, W., Cheng, L., Wang, L., & Zhang, X. (2013). Sustained attention in intellectually gifted children assessed using a continuous performance test. PloS one, 8(2), Article e57417. https://doi.org/10.1371/journal.pone.0057417
  • Stylianidou, F., Glauert, E., Rossis, D., Compton, A., Cremin, T., Craft, A., & Havu-Nuutinen, S. (2018). Fostering inquiry and creativity in early years STEM education: Policy recommendations from the creative little scientists project. European Journal of STEM Education, 3(3), 1-13. https://doi.org/10.20897/ejsteme/3875
  • Tay, J., Salazar, A., & Lee, H. (2018). Parental perceptions of STEM enrichment for young children. Journal for the Education of the Gifted, 41(1), 5-23. https://doi.org/10.1177/0162353217745159
  • Tippett, C. D., & Milford, T. M. (2017). Findings from a pre-kindergarten classroom: Making the case for STEM in early childhood education. International Journal of Science and Mathematics Education, 15(1), 67-86. https://doi.org/10.1007/s10763-017-9812-8
  • Toran, M., Aydin, E., & Etgiier, D. (2020). Investigating the effects of STEM enriched implementations on school readiness and concept acquisition of children. Ilkogretim Online, 19(1), 299-309. https://doi:10.17051/ilkonline.2020.656873
  • Vennix, J., den Brok, P., & Taconis, R. (2018). Do outreach activities in secondary STEM education motivate students and improve their attitudes towards STEM? International Journal of Science Education, 40(11), 1263–1283. https://doi.org/10.1080/09500693.2018.1473659
  • Wan, Z. H., Jiang, Y., & Zhan, Y. (2020). STEM education in early childhood: A review of empirical studies. Early Education and Development, 32(7), 940-962. https://doi.org/10.1080/10409289.2020.1814986
  • Wang, M. Te, & Degol, J. L. (2017). Gender gap in science, technology, engineering, and mathematics (STEM): Current knowledge, implications for practice, policy, and future directions. Educational Psychology Review, 29(1), 119–140. https://doi.org/10.1007/s10648-015-9355-x
  • Williams, B., Onsman, A., & Brown, T. (2010). Exploratory factor analysis: A five-step guide for novices. Australasian Journal of Paramedicine, 8(3), 1-13. https://doi.org/10.33151/ajp.8.3.93
  • Wilkerson, S. B., & Haden, C. M. (2014). Effective practices for evaluating STEM out-of-School time programs. Afterschool Matters, 19, 10-19. https://files.eric.ed.gov/fulltext/EJ1021960.pdf
  • Wu, I. C., Pease, R., & Maker, C. J. (2019). Students' perceptions of a special program for developing exceptional talent in STEM. Journal of Advanced Academics, 30(4), 474-499. https://doi.org/10.1177/1932202X19864690
  • Varni, J. W., Limbers, C. A., & Burwinkle, T. M. (2007). How young can children reliably and validly self-report their health-related quality of life? An analysis of 8,591 children across age subgroups with the PedsQL™ 4.0 Generic Core Scales. Health and Quality of Life Outcomes, 5(1), 1-13. https://doi.org/10.1186/1477-7525-5-1
  • Vogt, W. P. (2005). Dictionary of statistics & methodology: A nontechnical guide for the social sciences (3rd ed.). Sage.
  • Young, J. L., Young, J. R., & Ford, D. Y. (2017). Standing in the gaps: Examining the effects of early gifted education on Black girl achievement in STEM. Journal of Advanced Academics, 28(4), 290–312. https://doi.org/10.1177/1932202X17730549
  • Yu, C. H., Kuo, C. C., Chen, Y. W., & Chu, C. C. (2020). A retrospective survey on evaluating an enrichment program for socioeconomically disadvantaged gifted students. Gifted Education International, 36(2), 170–195. https://doi.org/10.1177/0261429420914087

Young gifted students’ STEM learning experiences: A bioecological systems view

Year 2023, Volume: 10 Issue: 1, 11 - 32, 30.03.2023

Abstract

Using Bronfenbrenner’s bioecological systems theory, this concurrent mixed-methods study investigated the learning experiences of gifted students in a STEM enrichment program. Survey data were collected from students (n=530). Participants rated the enrichment program as highly supportive of STEM learning interests with appropriate challenges. The MANOVA results indicated no significant difference existed in students’ perceptions of their courses. Analyses of parent surveys (n=196) and semi-structured teacher interviews (n=3) revealed that inviting learning environments, intellectual and socioemotional stimulation, responsive curricula and instruction, interest, and motivation in STEM prominently influenced students’ learning experiences. The study concludes with implications for gifted education in STEM.

Supporting Institution

Gifted Education Research and Resource Institute at Purdue University

References

  • Allen, P. J., Chang, R., Gorrall, B. K., Waggenspack, L., Fukuda, E., Little, T. D., & Noam, G. G. (2019). From quality to outcomes: a national study of afterschool STEM programming. International Journal of STEM Education, 6(1), 1-21. https://doi.org/10.1186/s40594-019-0191-2
  • Boeije, H. (2009). Analysis in qualitative research. Sage publications.
  • Banko, W., Grant, M. L., Jabot, M. E., McCormack, A. J., & O'Brien, T. (2013). Science for the next generation: Preparing for the new standards. National Science Teachers Association Press.
  • Bergold, S., Hastall, M. R., & Steinmayr, R. (2021). Do mass media shape stereotypes about intellectually gifted individuals? Two experiments on stigmatization effects from biased newspaper reports. Gifted Child Quarterly, 65(1), 75-94. https://doi.org/10.1177/0016986220969393
  • Breedlove, L. (2021). Characteristics of gifted learners. In J. L. Roberts, T. F. Inman, & J. H. Robins (Eds.), Introduction to gifted education (pp. 55-75). Routledge. https://doi.org/10.4324/9781003235859
  • Bronfenbrenner U. (1979). Ecology of human development. Harvard University Press.
  • Bronfenbrenner, U. (1994). Ecological models of human development. In M. Gauvian & M. Cole (Eds.), Readings on the development of children (pp. 37-43). Freeman. https://impactofspecialneeds.weebly.com/uploads/3/4/1/9/3419723/ ecologial_models_of_human_development.pdf
  • Bronfenbrenner, U. (1995). Developmental ecology through space and time: A future perspective. In P. Moen, G. H. Elder, Jr., & K. Lüscher (Eds.), Examining lives in context: Perspectives on the ecology of human development (pp. 619-647). American Psychological Association. https://doi.org/10.1037/10176-018
  • Bronfenbrenner, U. (1999). Environments in developmental perspective: Theoretical and operational models. In S. L. Friedman & T. D. Wachs (Eds.), Measuring environment across the life span: Emerging methods and concepts (pp. 3-28). American Psychological Association. https://doi.org/10.1037/10317-001
  • Bronfenbrenner, U., & Ceci, S. J. (1994). Nature-nurture reconceptualized in developmental perspective: A bioecological model. Psychological Review, 101(4), 568-586. https://doi.org/10.1037/0033-295X.101.4.568
  • Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education in P‐12 classrooms. Journal of Engineering Education, 97(3), 369-387. https://doi.org/10.1002/j.2168-9830.2008.tb00985.x
  • Brubacher, M. R., & Silinda, F. T. (2019). Enjoyment and not competence predicts academic persistence for distance education students. The International Review of Research in Open and Distributed Learning, 20(3), 166-179. https://doi.org/10.19173/irrodl.v20i4.4325
  • Bryan, L. A., Moore, T. J., Johnson, C. C., & Roehrig, G. H. (2016). Integrated STEM education. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM road map: A framework for integrated STEM education (pp. 23–37). Routledge.
  • Cappelli, C. J., Boice, K. L., & Alemdar, M. (2019). Evaluating university-based summer STEM programs: Challenges, successes, and lessons learned. Journal of STEM Outreach, 2(1), 1-12. https://doi.org/10.15695/jstem/v2i1.13
  • Chittum, J. R., Jones, B. D., Akalin, S., & Schram, Á. B. (2017). The effects of an afterschool STEM program on students' motivation and engagement. International Journal of STEM Education, 4(1), 1-16. https://doi.org/10.1186/s40594-017-0065-4
  • Chowdhury, M. A. (2016). Gifted education in science and chemistry: Perspectives and insights into teaching, pedagogies, assessments, and psychosocial skills development. Journal for the Education of Gifted Young Scientists, 4(1), 53-66. https://dergipark.org.tr/en/pub/jegys/issue/37319/430646
  • Chowkase, A. A. (2021). A bioecological systems view of school experiences of high-ability students from rural India. Gifted Child Quarterly. Advance online publication. https://doi.org/10.1177/00169862211030311
  • Clasessens, A., Duncan, G., & Engel, M. (2009). Kindergarten skills and fifth grade achievement: Evidence from the ECLS-K. Economics of Education Review, 28(4), 415–427.
  • Crawford, J., Henderson, K. B., Rudolph, J., Malkawi, B., Glowatz, M., Burton, R., Magni, P. A., & Lam, S. (2020). COVID-19: 20 countries' higher education intra-period digital pedagogy responses. Journal of Applied Learning & Teaching, 3(1), 1–20, https://doi.org/10.37074/jalt.2020.3.1.7
  • Creswell, J. W., & Clark, V. L. P. (2017). Designing and conducting mixed methods research (3rd ed.). Sage publications.
  • Dabney, K. P., Tai, R. H., Almarode, J. T., Miller-Friedmann, J. L., Sonnert, G., Sadler, P. M., & Hazari, Z. (2012). Out-of-school time science activities and their association with career interest in STEM. International Journal of Science Education, 2(1), 63–79. https://doi.org/10.1080/21548455.2011.629455
  • Dey, I. (2003). Qualitative data analysis: A user friendly guide for social scientists. Routledge.
  • Dubosarsky, M., John, M. S., Anggoro, F., Wunnava, S., & Celik, U. (2018). Seeds of STEM: The development of a problem-based STEM curriculum for early childhood classrooms. In L. D. English & T. J. Moore (Eds.), Early engineering learning (pp. 249-269). Springer.
  • Eccles, J. S., Arberton, A., Buchanan, C. M., Janis, J., Flanagan, C., Harold, R., MacIver, D., Midgley, C., Reuman, D. (1993). School and family effects on the ontogeny of children's interests, self-perceptions, and activity choices. In J. E. Jacobs (Ed.), Nebraska Symposium on Motivation, 1992: Developmental perspectives on motivation (pp. 145–208). University of Nebraska Press.
  • English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3(1), 1-8. https://doi.org/10.1186/s40594-016-0036-1
  • Elsen-Rooney, M. (2020, January 7). NYC Education Dept. okays Brooklyn elementary school's plan to scrap separate 'Gifted' courses. New York Daily News. https://www.nydailynews.com/new-york/education/ny-gifted-talented-elementary-brooklyn-20200107-sik5qabkkbdehc33jekqrulgqy-story.html
  • Eshach, H., & Fried, M. N. (2005). Should science be taught in early childhood? Journal of Science Education and Technology, 14(3), 315-336. https://link.springer.com/content/pdf/10.1007/s10956-005-7198-9.pdf
  • Field, A. (2009). Discovering statistics using SPSS. Sage.
  • Fisher, R. J., & Katz, J. E. (2000). Social‐desirability bias and the validity of self‐reported values. Psychology & Marketing, 17(2), 105-120. https://doi.org/10.1002/(SICI)1520-6793(200002)17:2<105::AID-MAR3>3.0.CO;2-9
  • French, L. (2004). Science as the center of a coherent, integrated early childhood curriculum. Early Childhood Research Quarterly, 19(1), 138-149. https://doi.org/10.1016/j.ecresq.2004.01.004
  • Furfarro, H., & Bazzaz, D. (2019, October 22). What's next for Seattle schools' gifted programs? Here's what we know so far. The Seattle Times. https://www.seattletimes.com/
  • Ghaderizefreh, S., & Hoover, M. L. (2018). Student Satisfaction with Online Learning in a Blended Course. International Journal for Digital Society, 9(3), 1393–1398. https://doi.org/10.20533/ijds.2040.2570.2018.0172
  • Golle, J., Zettler, I., Rose, N., Trautwein, U., Hasselhorn, M., & Nagengast, B. (2018). Effectiveness of a "grass roots" statewide enrichment program for gifted elementary school children. Journal of Research on Educational Effectiveness, 11(3), 375-408. https://doi.org/10.1080/19345747.2017.1402396
  • Goodall, J., & Montgomery, C. (2014). Parental involvement to parental engagement: A continuum. Educational Review, 66(4), 399-410. https://doi.org/10.1080/00131911.2013.781576
  • Grissom, J. A., Redding, C., & Bleiberg, J. F. (2019). Money over merit? Socioeconomic gaps in receipt of gifted services. Harvard Educational Review, 89(3), 337–369. https://doi.org/10.17763/1943-5045-89.3.337
  • Gubbels, J., Segers, E., & Verhoeven, L. (2014). Cognitive, socio- emotional, and attitudinal effects of a triarchic enrichment program for gifted children. Journal for the Education of the Gifted, 37(4), 378-397. https://doi.org/10.1177/0162353214552565
  • Hayes, N., O'Toole, L., & Halpenny, A. M. (2017). Introducing Bronfenbrenner: A guide for practitioners and students in early years education. Routledge.
  • Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
  • Jensen, F., & Sjaastad, J. (2013). A Norwegian out-of-school mathematics project's influence on secondary students' STEM motivation. International Journal of Science and Mathematics Education, 11(6), 1437–1461. https://doi.org/10.1007/s10763-013-9401-4
  • Jolly, J. L., & Matthews, M. S. (2018). The Chronicles of homeschooling gifted learners. Journal of School Choice, 12(1), 123–145. https://doi.org/10.1080/15582159.2017.1354644
  • Jungert, T., Levine, S., & Koestner, R. (2020). Examining how parent and teacher enthusiasm influences motivation and achievement in STEM. Journal of Educational Research, 113(4), 275–282. https://doi.org/10.1080/00220671.2020.1806015
  • Katz, L. G. (2010). STEM in the early years. Early Childhood Research and Practice, 12(2), 11-19. https://www.olaweb.org/assets/CSD/CSDFall2013BrainSTEM/stem%20in%20the%20early%20years%20-%20katz%20article.pdf
  • Kim, M. (2016). A meta-analysis of the effects of enrichment programs on gifted students. Gifted Child Quarterly, 60(2), 102-116. https://doi.org/10.1177/0016986216630607
  • Leech, N. L., & Onwuegbuzie, A. J. (2009). A typology of mixed methods research designs. Quality & Quantity, 43(2), 265-275. https://doi.org/10.1007/s11135-007-9105-3
  • Lippard C.N., Riley K.L., Lamm M.H. (2018) Encouraging the development of engineering habits of mind in prekindergarten learners. In L. D. English & T. J. Moore (Eds.), Early engineering learning (pp.19-36). Springer. https://doi.org/10.1007/978-981-10-8621-2_3
  • Litzler, E., Samuelson, C. C., & Lorah, J. A. (2014). Breaking it down: Engineering student STEM confidence at the intersection of race/ethnicity and gender. Research in Higher Education, 55(8), 810–832. https://doi.org/10.1007/s11162-014-9333-z
  • Mantzicopoulos, P., French, B. F., & Patrick, H. (2019). The quality of mathematics instruction in kindergarten: Associations with students' achievement and motivation. The Elementary School Journal, 119(4), 651-676. https://www.journals.uchicago.edu/doi/pdf/10.1086/703176
  • Marsh, H. W., Hau, K. T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler's (1999) findings. Structural Equation Modeling, 11(3), 320-341. https://doi.org/10.1207/s15328007sem1103_2
  • Matthews, M. S., & Jolly, J. L. (2018). The learning environment at home. In J. L. Roberts, T. F. Inman, J. H. Robins (Eds.), Introduction to gifted education (pp.197-210). Prufrock Press.
  • McClure, E. R., Guernsey, L., Clements, D. H., Bales, S. N., Nichols, J., Kendall-Taylor, N., & Levine, M. H. (2017). STEM starts early: Grounding science, technology, engineering, and math education in early childhood. Joan Ganz Cooney Center at Sesame Workshop New America. https://files.eric.ed.gov/fulltext/ED574402.pdf
  • Miller, R., & Gentry, M. (2010). Developing talents among high-potential students from low-income families in an out-of-school enrichment program. Journal of Advanced Academics, 21(4), 594-627. https://doi.org/10.1177/1932202X1002100403
  • Mohd Zahidi, A , Sy Ing, O , Yusof, R , Kanapathy, S , Ismail, M , You, H. (2021). Effect of science camp for enhancing STEM skills of gifted young scientists. Journal for the Education of Gifted Young Scientists, 9(1), 15-26. https://doi.org/10.17478/jegys.821700
  • Moore T.J., Tank K.M., English L. (2018) Engineering in the early grades: Harnessing children's natural ways of thinking. In L. D. English & T. J. Moore (Eds.), Early engineering learning (pp.9-18). Springer. https://doi.org/10.1007/978-981-10-8621-2_2
  • Mun, R. U., & Hertzog, N. B. (2018). Teaching and learning in STEM enrichment spaces: From doing math to thinking mathematically. Roeper Review, 40(2), 121-129. https://doi.org/10.1080/02783193.2018.1434713
  • Jackson, R., & King, M. P. (2016). Increasing Students' Access to Opportunities in STEM by Effectively Engaging Families. National Parent Teachers Association.
  • Olszewski‐Kubilius, P., & Lee, S. Y. (2004). Parent perceptions of the effects of the Saturday enrichment program on gifted students' talent development. Roeper Review, 26(3), 156-165. https://doi.org/10.1080/02783190409554261
  • Riley, T., & White, V. (2016). Developing a sense of belonging through engagement with like-minded peers: A matter of equity. New Zealand Journal of Educational Studies, 51(2), 211-225. https://doi.org/10.1007/s40841-016-0065-9
  • Saldaña, J. (2015). The coding manual for qualitative researchers (3rd ed.). Sage.
  • Sastre-Riba, S. (2013). High intellectual ability: Extracurricular enrichment and cognitive management. Journal for the Education of the Gifted, 36(1), 119-132. https://doi.org/10.1177/0162353212472407
  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464. http://www.jstor.org/stable/2958889
  • Shi, J., Tao, T., Chen, W., Cheng, L., Wang, L., & Zhang, X. (2013). Sustained attention in intellectually gifted children assessed using a continuous performance test. PloS one, 8(2), Article e57417. https://doi.org/10.1371/journal.pone.0057417
  • Stylianidou, F., Glauert, E., Rossis, D., Compton, A., Cremin, T., Craft, A., & Havu-Nuutinen, S. (2018). Fostering inquiry and creativity in early years STEM education: Policy recommendations from the creative little scientists project. European Journal of STEM Education, 3(3), 1-13. https://doi.org/10.20897/ejsteme/3875
  • Tay, J., Salazar, A., & Lee, H. (2018). Parental perceptions of STEM enrichment for young children. Journal for the Education of the Gifted, 41(1), 5-23. https://doi.org/10.1177/0162353217745159
  • Tippett, C. D., & Milford, T. M. (2017). Findings from a pre-kindergarten classroom: Making the case for STEM in early childhood education. International Journal of Science and Mathematics Education, 15(1), 67-86. https://doi.org/10.1007/s10763-017-9812-8
  • Toran, M., Aydin, E., & Etgiier, D. (2020). Investigating the effects of STEM enriched implementations on school readiness and concept acquisition of children. Ilkogretim Online, 19(1), 299-309. https://doi:10.17051/ilkonline.2020.656873
  • Vennix, J., den Brok, P., & Taconis, R. (2018). Do outreach activities in secondary STEM education motivate students and improve their attitudes towards STEM? International Journal of Science Education, 40(11), 1263–1283. https://doi.org/10.1080/09500693.2018.1473659
  • Wan, Z. H., Jiang, Y., & Zhan, Y. (2020). STEM education in early childhood: A review of empirical studies. Early Education and Development, 32(7), 940-962. https://doi.org/10.1080/10409289.2020.1814986
  • Wang, M. Te, & Degol, J. L. (2017). Gender gap in science, technology, engineering, and mathematics (STEM): Current knowledge, implications for practice, policy, and future directions. Educational Psychology Review, 29(1), 119–140. https://doi.org/10.1007/s10648-015-9355-x
  • Williams, B., Onsman, A., & Brown, T. (2010). Exploratory factor analysis: A five-step guide for novices. Australasian Journal of Paramedicine, 8(3), 1-13. https://doi.org/10.33151/ajp.8.3.93
  • Wilkerson, S. B., & Haden, C. M. (2014). Effective practices for evaluating STEM out-of-School time programs. Afterschool Matters, 19, 10-19. https://files.eric.ed.gov/fulltext/EJ1021960.pdf
  • Wu, I. C., Pease, R., & Maker, C. J. (2019). Students' perceptions of a special program for developing exceptional talent in STEM. Journal of Advanced Academics, 30(4), 474-499. https://doi.org/10.1177/1932202X19864690
  • Varni, J. W., Limbers, C. A., & Burwinkle, T. M. (2007). How young can children reliably and validly self-report their health-related quality of life? An analysis of 8,591 children across age subgroups with the PedsQL™ 4.0 Generic Core Scales. Health and Quality of Life Outcomes, 5(1), 1-13. https://doi.org/10.1186/1477-7525-5-1
  • Vogt, W. P. (2005). Dictionary of statistics & methodology: A nontechnical guide for the social sciences (3rd ed.). Sage.
  • Young, J. L., Young, J. R., & Ford, D. Y. (2017). Standing in the gaps: Examining the effects of early gifted education on Black girl achievement in STEM. Journal of Advanced Academics, 28(4), 290–312. https://doi.org/10.1177/1932202X17730549
  • Yu, C. H., Kuo, C. C., Chen, Y. W., & Chu, C. C. (2020). A retrospective survey on evaluating an enrichment program for socioeconomically disadvantaged gifted students. Gifted Education International, 36(2), 170–195. https://doi.org/10.1177/0261429420914087
There are 75 citations in total.

Details

Primary Language English
Subjects Other Fields of Education
Journal Section STEM for Gifted
Authors

Yao Yang 0000-0003-3387-6474

Jingwen Liu 0000-0003-3533-3959

Chunyu Xu 0000-0003-2715-4707

Publication Date March 30, 2023
Published in Issue Year 2023 Volume: 10 Issue: 1

Cite

APA Yang, Y., Liu, J., & Xu, C. (2023). Young gifted students’ STEM learning experiences: A bioecological systems view. Journal of Gifted Education and Creativity, 10(1), 11-32.

Türkiye'den makaleleri gönderen akademisyenlerin Türkçe olarak makalelerini yüklemeleri, tüm hakemlik süreçlerinden sonra kabul edilirse ingilizce çevirisinin yapılması önemle duyurulur.