Research Article
BibTex RIS Cite

Asymptomatic malaria in selected rural health facilities in Vihiga County, Western Kenya

Year 2025, Volume: 8 Issue: 3, 411 - 417, 30.05.2025
https://doi.org/10.32322/jhsm.1622951

Abstract

Abstract
Background and aims: Malaria is still a devastating health challenge in the world. In 2022, Africa accounted for 93.6% of all malaria cases with 95.4% deaths globally. Kenya recorded about 3.5 million new malaria cases with a mortality of 12,011 deaths while Vihiga County had a prevalence of 20% for all symptomatic outpatients. Asymptomatic malaria infection in Kenya was reported as 42% and 10% from two malaria endemic areas. Asymptomatic patients never visit health facilities for treatment but remain Plasmodium falciparum reservoirs in the community. This study assessed the occurrence of asymptomatic malaria around five rural health facilities in a malaria endemic Vihiga County, Western Kenya.

Methods: This was a cross-sectional survey targeting 336 participants and running between April 2022 and March 2023. CareStart Malaria HRP2 (Pf) was used for sample diagnosis as per manufacturer’s instructions. Demographic and other laboratory parameters of study participants were taken.
Results: Chi-square was used to analyse this data. Average percentage prevalence for asymptomatic malaria was 8.3%; (95% CI; 5.3%-10.8%, P<0.05). Age category of below five years had a prevalence of 2.5% (95% CI: 0.6%-9.5%, P>0.05), between five and seventeen years was 10.6% (95% CI: 5.8%-15.2%, P<0.05) and above seventeen years was 9,6% (95% CI: 4.7%-14.6%, P<0.05). Females had a prevalence of 9.6% (95% CI: 5.5%-13.7%, P<0.05) while males had 6.9% (95% CI: 3.5%-11.0%, P<0.05). High quarterly rainfall of 249.7 mm had 12.2% prevalence while low rainfall of 12 mm had 1.2% prevalence of asymptomatic malaria respectively
Conclusion: This study demonstrated the presence of asymptomatic malaria participants in Vihiga County, Western Kenya. There were more asymptomatic cases during rainy than dry seasons. This study underscores the need for continued surveillance and treatment of the malaria asymptomatic cases to reduce its spread.

Key words: Malaria, asymptomatic malaria, mRDT, Pfhrp2/3

Project Number

1

References

  • Baliga BS, Baliga S, Jain A, et al. Digitized smart surveillance and micromanagement using information technology for malaria elimination in Mangaluru, India: an analysis of five-year post-digitization data. Malar J. 2021;20(1):139. Published 2021 Mar 8. doi:10. 1186/s12936-021-03656-8
  • President’s malaria initiative: malaria operational plan for Kenya 2019. 1-75. https://www.pmi.gov/docs/default-source/default-document-library/ malaria-operational-plans/fy19/fy-2019-kenya-malaria-operational-plan.pdf?sfvrsn=3
  • Elnour Z, Grethe H, Siddig K, Munga S. Malaria control and elimination in Kenya: economy-wide benefits and regional disparities. Malar J. 2023; 22(1):117. doi:10.1186/s12936-023-04505-6
  • World Health Organisation: World malaria report 2023.
  • Korzeniewski K, Bylicka-Szczepanowska E, Lass A. Prevalence of asymptomatic malaria ınfections in seemingly healthy children, the Rural Dzanga Sangha Region, Central African Republic. Int J Environ Res Public Health. 2021;18(2):814. doi:10.3390/ijerph18020814
  • Kioko CK, Blanford JI. Malaria in Kenya during 2020: malaria indicator survey and suitability mapping for understanding spatial variations in prevalence and risk. GIScience Series. 2023;4:1-5. doi:10.5194/agile-giss- 4-31-2023
  • Salgado C, Ayodo G, Macklin MD, et al. The prevalence and density of asymptomatic Plasmodium falciparum infections among children and adults in three communities of western Kenya. Malar J. 2021;20(1):371. doi:10.1186/s12936-021-03905-w
  • Ibrahim AO, Bello IS, Ajetunmobi AO, Ayodapo A, Afolabi BA, Adeniyi MA. Prevalence of asymptomatic malaria infection by microscopy and its determinants among residents of Ido-Ekiti, Southwestern Nigeria. PLoS One. 2023;18(2):e0280981. doi:10.1371/journal.pone.0280981
  • Nderu D, Kimani F, Thiong’o K, et al. Plasmodium falciparum histidine-rich protein (PfHRP2 and 3) diversity in Western and Coastal Kenya. Sci Rep. 2019;9(1):1709. doi:10.1038/s41598-018-38175-1
  • Egbewale BE, Akindele AA, Adedokun SA, Oyekale OA. Prevalence of asymptomatic malaria and anemia among elderly population in Osun state, Southwestern Nigeria. Int J Comm Med Public Health. 2018;5(7): 2650-2656. doi:10.18203/2394-6040.ijcmph20182449
  • WHO Global malaria programme. False-negative RDT results and Plasmodium falciparum histidine-rich protein 2/3 gene deletions. Information Note. 2019;2(1):1-8.
  • Parsel SM, Gustafson SA, Friedlander E, et al. Malaria over-diagnosis in Cameroon: diagnostic accuracy of fluorescence and staining technologies (FAST) malaria stain and LED microscopy versus Giemsa and bright field microscopy validated by polymerase chain reaction. Infect Dis Poverty. 2017;6(1):32. doi:10.1186/s40249-017-0251-0
  • Bosco AB, Nankabirwa JI, Yeka A, et al. Limitations of rapid diagnostic tests in malaria surveys in areas with varied transmission intensity in Uganda 2017-2019: Implications for selection and use of HRP2 RDTs. PLoS One. 2020;15(12):e0244457. doi:10.1371/journal.pone.0244457
  • Kamau E, Yates A, Maisiba R, et al. Epidemiological and clinical implications of asymptomatic malaria and schistosomiasis co-infections in a rural community in western Kenya. BMC Infect Dis. 2021;21(1):937. doi:10.1186/s12879-021-06626-2
  • Hayuma PM, Wang CW, Liheluka E, et al. Prevalence of asymptomatic malaria, submicroscopic parasitaemia and anaemia in Korogwe District, north-eastern Tanzania. Malar J. 2021;20(1):424. doi:10.1186/s 12936-021-03952-3
  • USAID, CDC. US President’s malaria initiative Cambodia: malaria operational plan FY 2020. 2020:1-136.
  • Watson OJ, Sumner KM, Janko M, et al. False-negative malaria rapid diagnostic test results and their impact on community-based malaria surveys in sub-Saharan Africa. BMJ Global Health. 2019;4:e001582. doi: 10.1136/bmjgh-2019-001582
  • Coldiron ME, Assao B, Langendorf C, et al. Clinical diagnostic evaluation of HRP2 and pLDH-based rapid diagnostic tests for malaria in an area receiving seasonal malaria chemoprevention in Niger. Malar J. 2019;18(1):443. doi:10.1186/s12936-019-3079-1
  • Cunningham J, Jones S, Gatton ML, et al. A review of the WHO malaria rapid diagnostic test product testing programme (2008-2018): performance, procurement and policy. Malar J. 2019;18(1):387. doi:10. 1186/s12936-019-3028-z
  • Dalrymple U, Arambepola R, Gething PW, Cameron E. How long do rapid diagnostic tests remain positive after anti-malarial treatment? Malar J. 2018;17(1):228. doi:10.1186/s12936-018-237
  • Thomson R, Parr JB, Cheng Q, Chenet S, Perkins M, Cunningham J. Prevalence of Plasmodium falciparum lacking histidine-rich proteins 2 and 3: a systematic review. Bull World Health Organ. 2020;98(8):558-568. doi:10.2471/BLT.20.250621
  • Davis EL, Hollingsworth TD, Keeling MJ. An analytically tractable, age-structured model of the impact of vector control on mosquito-transmitted infections. PLoS Comput Biol. 2024;20(3):e1011440. doi:10. 1371/journal.pcbi.1011440
  • Yang Y, Tang T, Feng B, et al. Disruption of Plasmodium falciparum histidine-rich protein 2 may affect haem metabolism in the blood stage. Parasit Vectors. 2020;13(1):611. doi:10.1186/s13071-020-04460-0
  • Heinemann M, Phillips RO, Vinnemeier CD, Rolling CC, Tannich E, Rolling T. High prevalence of asymptomatic malaria infections in adults, Ashanti Region, Ghana, 2018. Malar J. 2020;19(1):366. doi:10.1186/ s12936-020-03441-z
  • Kamau A, Mtanje G, Mataza C, et al. Malaria infection, disease and mortality among children and adults on the coast of Kenya. Malar J. 2020;19(1):210. doi:10.1186/s12936-020-03286-6
  • Prosser C, Gresty K, Ellis J, et al. Plasmodium falciparum histidine-rich protein 2 and 3 gene deletions in strains from Nigeria, Sudan, and South Sudan. Emerg Infect Dis. 2021;27(2):471-479. doi:10.3201/eid2702.191410
  • Ntenda PAM, Chirambo AC, Nkoka O, El-Meidany WM, Goupeyou-Youmsi J. Implication of asymptomatic and clinical Plasmodium falciparum infections on biomarkers of iron status among school-aged children in Malawi. Malar J. 2022;21(1):278. doi:10.1186/s12936-022-04297-1
  • Otambo WO, Onyango PO, Ochwedo K, et al. Clinical malaria incidence and health seeking pattern in geographically heterogeneous landscape of western Kenya. BMC Infect Dis. 2022;22(1):768. doi:10.1186/s12879-022-07757-w
  • Alemayehu GS, Blackburn K, Lopez K, et al. Detection of high prevalence of Plasmodium falciparum histidine-rich protein 2/3 gene deletions in Assosa zone, Ethiopia: implication for malaria diagnosis. Malar J. 2021;20(1):109. doi:10.1186/s12936-021-03629-x
  • Agaba BB, Yeka A, Nsobya S, et al. Systematic review of the status of pfhrp2 and pfhrp3 gene deletion, approaches and methods used for its estimation and reporting in Plasmodium falciparum populations in Africa: review of published studies 2010-2019. Malar J. 2019;18(1):355. doi:10.1186/s12936-019-2987-4
  • Charan J, Biswas T. How to calculate sample size for different study designs in medical research? Indian J Psychol Med. 2013;35(2):121-126. doi:10.4103/0253-7176.116232
  • Ochwedo KO, Ariri FO, Otambo WO, et al. Rare alleles and signatures of selection on the immunodominant domains of Pfs230 and Pfs48/45 in malaria parasites from Western Kenya. Front Genet. 2022;13:867906. doi:10.3389/fgene.2022.867906
  • Bakari C, Jones S, Subramaniam G, et al. Community-based surveys for Plasmodium falciparum Pfhrp2 and Pfhrp3 gene deletions in selected regions of mainland Tanzania. Malar J. 2020;19(1):391. doi:10.1186/s12936-020-03459-3
  • Plucinski MM, Herman C, Jones S, et al. Screening for Pfhrp2/3-deleted Plasmodium falciparum, non-falciparum, and low-density malaria infections by a multiplex antigen assay. J Infect Dis. 2019;219(3):437-447. doi:10.1093/infdis/jiy525
  • Ibrahim AO, Bello IS, Ajetunmobi AO, Ayodapo A, Afolabi BA, Adeniyi MA. Prevalence of asymptomatic malaria infection by microscopy and its determinants among residents of Ido-Ekiti, Southwestern Nigeria. PLoS One. 2023;18(2):e0280981. doi:10.1371/journal.pone.0280981
  • Mensah BA, Myers-Hansen JL, Obeng Amoako E, Opoku M, Abuaku BK, Ghansah A. Prevalence and risk factors associated with asymptomatic malaria among school children: repeated cross-sectional surveys of school children in two ecological zones in Ghana. BMC Public Health. 2021;21(1):1697. doi:10.1186/s12889-021-11714-8
  • Munde EO, Okeyo WA, Raballah E, et al. Association between Fcγ receptor IIA, IIIA and IIIB genetic polymorphisms and susceptibility to severe malaria anemia in children in western Kenya. BMC Infect Dis. 2017;17(1):289. doi:10.1186/s12879-017-2390-0
  • Ongonda JK, Ayieko C, Munde E, Miheso S. Effect of rainfall on seasonality of malaria transmission dynamics and percentage occurrence of MRDT positives around the five rural health facilities in Vihiga County, Kenya. IJRIAS. 2024. doi:10.51584/IJRIAS.2024.90347
  • Sifuna P, Oyugi M, Ogutu B, et al. Health & demographic surveillance system profile: the Kombewa health and demographic surveillance system (Kombewa HDSS). Int J Epidemiol. 2014;43(4):1097-1104. doi:10. 1093/ije/dyu139

Asymptomatic malaria in selected rural health facilities in Vihiga County, Western Kenya

Year 2025, Volume: 8 Issue: 3, 411 - 417, 30.05.2025
https://doi.org/10.32322/jhsm.1622951

Abstract

Aims: Malaria is still a devastating health challenge in the world. In 2022, Africa accounted for 93.6% of all malaria cases with 95.4% deaths globally. Kenya recorded about 3.5 million new malaria cases with a mortality of 12,011 deaths while Vihiga County had a prevalence of 20% for all symptomatic outpatients. Asymptomatic malaria infection in Kenya was reported as 42% and 10% from two malaria endemic areas. Asymptomatic patients never visit health facilities for treatment but remain Plasmodium falciparum reservoirs in the community. This study assessed the occurrence of asymptomatic malaria around five rural health facilities in a malaria endemic Vihiga County, Western Kenya.
Methods: This was a cross-sectional survey targeting 336 participants and running between April 2022 and March 2023. CareStart malaria HRP2 (Pf) was used for sample diagnosis as per manufacturer’s instructions. Demographic and other laboratory parameters of study participants were taken.
Results: Chi-square was used to analyse this data. Average percentage prevalence for asymptomatic malaria was 8.3%; (95% CI; 5.3%-10.8%, p<0.05). Age category of below five years had a prevalence of 2.5% (95% CI: 0.6%-9.5%, p>0.05), between five and seventeen years was 10.6% (95% CI: 5.8%-15.2%, p<0.05) and above seventeen years was 9,6% (95% CI: 4.7%-14.6%, p<0.05). Females had a prevalence of 9.6% (95% CI: 5.5%-13.7%, p<0.05) while males had 6.9% (95% CI: 3.5%-11.0%, p<0.05). High quarterly rainfall of 249.7 mm had 12.2% prevalence while low rainfall of 12 mm had 1.2% prevalence of asymptomatic malaria respectively
Conclusion: This study demonstrated the presence of asymptomatic malaria participants in Vihiga County, Western Kenya. There were more asymptomatic cases during rainy than dry seasons. This study underscores the need for continued surveillance and treatment of the malaria asymptomatic cases to reduce its spread.

Ethical Statement

Ethical Statement The study was initiated with the approval of the Maseno University Scientific and Ethics Review committee (6th June 2022, No: MUSERC/01047/22) and National commission for science, technology and Innovation, Kenya (1st July 2022 No: NACOSTI/P/22/18417) and oobtaining written consent to participate in the study from the participants

Supporting Institution

This study is supported by Maseno University and the Kenya Medical Research Institute (KEMRI) Kisumu

Project Number

1

Thanks

Thanks

References

  • Baliga BS, Baliga S, Jain A, et al. Digitized smart surveillance and micromanagement using information technology for malaria elimination in Mangaluru, India: an analysis of five-year post-digitization data. Malar J. 2021;20(1):139. Published 2021 Mar 8. doi:10. 1186/s12936-021-03656-8
  • President’s malaria initiative: malaria operational plan for Kenya 2019. 1-75. https://www.pmi.gov/docs/default-source/default-document-library/ malaria-operational-plans/fy19/fy-2019-kenya-malaria-operational-plan.pdf?sfvrsn=3
  • Elnour Z, Grethe H, Siddig K, Munga S. Malaria control and elimination in Kenya: economy-wide benefits and regional disparities. Malar J. 2023; 22(1):117. doi:10.1186/s12936-023-04505-6
  • World Health Organisation: World malaria report 2023.
  • Korzeniewski K, Bylicka-Szczepanowska E, Lass A. Prevalence of asymptomatic malaria ınfections in seemingly healthy children, the Rural Dzanga Sangha Region, Central African Republic. Int J Environ Res Public Health. 2021;18(2):814. doi:10.3390/ijerph18020814
  • Kioko CK, Blanford JI. Malaria in Kenya during 2020: malaria indicator survey and suitability mapping for understanding spatial variations in prevalence and risk. GIScience Series. 2023;4:1-5. doi:10.5194/agile-giss- 4-31-2023
  • Salgado C, Ayodo G, Macklin MD, et al. The prevalence and density of asymptomatic Plasmodium falciparum infections among children and adults in three communities of western Kenya. Malar J. 2021;20(1):371. doi:10.1186/s12936-021-03905-w
  • Ibrahim AO, Bello IS, Ajetunmobi AO, Ayodapo A, Afolabi BA, Adeniyi MA. Prevalence of asymptomatic malaria infection by microscopy and its determinants among residents of Ido-Ekiti, Southwestern Nigeria. PLoS One. 2023;18(2):e0280981. doi:10.1371/journal.pone.0280981
  • Nderu D, Kimani F, Thiong’o K, et al. Plasmodium falciparum histidine-rich protein (PfHRP2 and 3) diversity in Western and Coastal Kenya. Sci Rep. 2019;9(1):1709. doi:10.1038/s41598-018-38175-1
  • Egbewale BE, Akindele AA, Adedokun SA, Oyekale OA. Prevalence of asymptomatic malaria and anemia among elderly population in Osun state, Southwestern Nigeria. Int J Comm Med Public Health. 2018;5(7): 2650-2656. doi:10.18203/2394-6040.ijcmph20182449
  • WHO Global malaria programme. False-negative RDT results and Plasmodium falciparum histidine-rich protein 2/3 gene deletions. Information Note. 2019;2(1):1-8.
  • Parsel SM, Gustafson SA, Friedlander E, et al. Malaria over-diagnosis in Cameroon: diagnostic accuracy of fluorescence and staining technologies (FAST) malaria stain and LED microscopy versus Giemsa and bright field microscopy validated by polymerase chain reaction. Infect Dis Poverty. 2017;6(1):32. doi:10.1186/s40249-017-0251-0
  • Bosco AB, Nankabirwa JI, Yeka A, et al. Limitations of rapid diagnostic tests in malaria surveys in areas with varied transmission intensity in Uganda 2017-2019: Implications for selection and use of HRP2 RDTs. PLoS One. 2020;15(12):e0244457. doi:10.1371/journal.pone.0244457
  • Kamau E, Yates A, Maisiba R, et al. Epidemiological and clinical implications of asymptomatic malaria and schistosomiasis co-infections in a rural community in western Kenya. BMC Infect Dis. 2021;21(1):937. doi:10.1186/s12879-021-06626-2
  • Hayuma PM, Wang CW, Liheluka E, et al. Prevalence of asymptomatic malaria, submicroscopic parasitaemia and anaemia in Korogwe District, north-eastern Tanzania. Malar J. 2021;20(1):424. doi:10.1186/s 12936-021-03952-3
  • USAID, CDC. US President’s malaria initiative Cambodia: malaria operational plan FY 2020. 2020:1-136.
  • Watson OJ, Sumner KM, Janko M, et al. False-negative malaria rapid diagnostic test results and their impact on community-based malaria surveys in sub-Saharan Africa. BMJ Global Health. 2019;4:e001582. doi: 10.1136/bmjgh-2019-001582
  • Coldiron ME, Assao B, Langendorf C, et al. Clinical diagnostic evaluation of HRP2 and pLDH-based rapid diagnostic tests for malaria in an area receiving seasonal malaria chemoprevention in Niger. Malar J. 2019;18(1):443. doi:10.1186/s12936-019-3079-1
  • Cunningham J, Jones S, Gatton ML, et al. A review of the WHO malaria rapid diagnostic test product testing programme (2008-2018): performance, procurement and policy. Malar J. 2019;18(1):387. doi:10. 1186/s12936-019-3028-z
  • Dalrymple U, Arambepola R, Gething PW, Cameron E. How long do rapid diagnostic tests remain positive after anti-malarial treatment? Malar J. 2018;17(1):228. doi:10.1186/s12936-018-237
  • Thomson R, Parr JB, Cheng Q, Chenet S, Perkins M, Cunningham J. Prevalence of Plasmodium falciparum lacking histidine-rich proteins 2 and 3: a systematic review. Bull World Health Organ. 2020;98(8):558-568. doi:10.2471/BLT.20.250621
  • Davis EL, Hollingsworth TD, Keeling MJ. An analytically tractable, age-structured model of the impact of vector control on mosquito-transmitted infections. PLoS Comput Biol. 2024;20(3):e1011440. doi:10. 1371/journal.pcbi.1011440
  • Yang Y, Tang T, Feng B, et al. Disruption of Plasmodium falciparum histidine-rich protein 2 may affect haem metabolism in the blood stage. Parasit Vectors. 2020;13(1):611. doi:10.1186/s13071-020-04460-0
  • Heinemann M, Phillips RO, Vinnemeier CD, Rolling CC, Tannich E, Rolling T. High prevalence of asymptomatic malaria infections in adults, Ashanti Region, Ghana, 2018. Malar J. 2020;19(1):366. doi:10.1186/ s12936-020-03441-z
  • Kamau A, Mtanje G, Mataza C, et al. Malaria infection, disease and mortality among children and adults on the coast of Kenya. Malar J. 2020;19(1):210. doi:10.1186/s12936-020-03286-6
  • Prosser C, Gresty K, Ellis J, et al. Plasmodium falciparum histidine-rich protein 2 and 3 gene deletions in strains from Nigeria, Sudan, and South Sudan. Emerg Infect Dis. 2021;27(2):471-479. doi:10.3201/eid2702.191410
  • Ntenda PAM, Chirambo AC, Nkoka O, El-Meidany WM, Goupeyou-Youmsi J. Implication of asymptomatic and clinical Plasmodium falciparum infections on biomarkers of iron status among school-aged children in Malawi. Malar J. 2022;21(1):278. doi:10.1186/s12936-022-04297-1
  • Otambo WO, Onyango PO, Ochwedo K, et al. Clinical malaria incidence and health seeking pattern in geographically heterogeneous landscape of western Kenya. BMC Infect Dis. 2022;22(1):768. doi:10.1186/s12879-022-07757-w
  • Alemayehu GS, Blackburn K, Lopez K, et al. Detection of high prevalence of Plasmodium falciparum histidine-rich protein 2/3 gene deletions in Assosa zone, Ethiopia: implication for malaria diagnosis. Malar J. 2021;20(1):109. doi:10.1186/s12936-021-03629-x
  • Agaba BB, Yeka A, Nsobya S, et al. Systematic review of the status of pfhrp2 and pfhrp3 gene deletion, approaches and methods used for its estimation and reporting in Plasmodium falciparum populations in Africa: review of published studies 2010-2019. Malar J. 2019;18(1):355. doi:10.1186/s12936-019-2987-4
  • Charan J, Biswas T. How to calculate sample size for different study designs in medical research? Indian J Psychol Med. 2013;35(2):121-126. doi:10.4103/0253-7176.116232
  • Ochwedo KO, Ariri FO, Otambo WO, et al. Rare alleles and signatures of selection on the immunodominant domains of Pfs230 and Pfs48/45 in malaria parasites from Western Kenya. Front Genet. 2022;13:867906. doi:10.3389/fgene.2022.867906
  • Bakari C, Jones S, Subramaniam G, et al. Community-based surveys for Plasmodium falciparum Pfhrp2 and Pfhrp3 gene deletions in selected regions of mainland Tanzania. Malar J. 2020;19(1):391. doi:10.1186/s12936-020-03459-3
  • Plucinski MM, Herman C, Jones S, et al. Screening for Pfhrp2/3-deleted Plasmodium falciparum, non-falciparum, and low-density malaria infections by a multiplex antigen assay. J Infect Dis. 2019;219(3):437-447. doi:10.1093/infdis/jiy525
  • Ibrahim AO, Bello IS, Ajetunmobi AO, Ayodapo A, Afolabi BA, Adeniyi MA. Prevalence of asymptomatic malaria infection by microscopy and its determinants among residents of Ido-Ekiti, Southwestern Nigeria. PLoS One. 2023;18(2):e0280981. doi:10.1371/journal.pone.0280981
  • Mensah BA, Myers-Hansen JL, Obeng Amoako E, Opoku M, Abuaku BK, Ghansah A. Prevalence and risk factors associated with asymptomatic malaria among school children: repeated cross-sectional surveys of school children in two ecological zones in Ghana. BMC Public Health. 2021;21(1):1697. doi:10.1186/s12889-021-11714-8
  • Munde EO, Okeyo WA, Raballah E, et al. Association between Fcγ receptor IIA, IIIA and IIIB genetic polymorphisms and susceptibility to severe malaria anemia in children in western Kenya. BMC Infect Dis. 2017;17(1):289. doi:10.1186/s12879-017-2390-0
  • Ongonda JK, Ayieko C, Munde E, Miheso S. Effect of rainfall on seasonality of malaria transmission dynamics and percentage occurrence of MRDT positives around the five rural health facilities in Vihiga County, Kenya. IJRIAS. 2024. doi:10.51584/IJRIAS.2024.90347
  • Sifuna P, Oyugi M, Ogutu B, et al. Health & demographic surveillance system profile: the Kombewa health and demographic surveillance system (Kombewa HDSS). Int J Epidemiol. 2014;43(4):1097-1104. doi:10. 1093/ije/dyu139
There are 39 citations in total.

Details

Primary Language English
Subjects Medical Parasitology
Journal Section Research Article
Authors

John Khamala Ongonda 0000-0001-7897-8517

Cyrus Ayieko 0000-0003-1673-225X

Elly Ochieng Munde This is me 0000-0002-7070-8528

Stephen Miheso 0009-0008-6344-5134

Project Number 1
Submission Date January 24, 2025
Acceptance Date April 14, 2025
Publication Date May 30, 2025
Published in Issue Year 2025 Volume: 8 Issue: 3

Cite

AMA Ongonda JK, Ayieko C, Munde EO, Miheso S. Asymptomatic malaria in selected rural health facilities in Vihiga County, Western Kenya. J Health Sci Med / JHSM. May 2025;8(3):411-417. doi:10.32322/jhsm.1622951

Interuniversity Board (UAK) Equivalency: Article published in Ulakbim TR Index journal [10 POINTS], and Article published in other (excuding 1a, b, c) international indexed journal (1d) [5 POINTS].

The Directories (indexes) and Platforms we are included in are at the bottom of the page.

Note: Our journal is not WOS indexed and therefore is not classified as Q.

You can download Council of Higher Education (CoHG) [Yüksek Öğretim Kurumu (YÖK)] Criteria) decisions about predatory/questionable journals and the author's clarification text and journal charge policy from your browser. https://dergipark.org.tr/tr/journal/2316/file/4905/show







The indexes of the journal are ULAKBİM TR Dizin, ICI World of Journals, DOAJ, Directory of Research Journals Indexing (DRJI), General Impact Factor, ASOS Index, WorldCat (OCLC), MIAR, OpenAIRE, Türkiye Citation Index, Türk Medline Index, InfoBase Index, Scilit, etc.

       images?q=tbn:ANd9GcRB9r6zRLDl0Pz7om2DQkiTQXqDtuq64Eb1Qg&usqp=CAU

500px-WorldCat_logo.svg.png

atifdizini.png

logo_world_of_journals_no_margin.png

images?q=tbn%3AANd9GcTNpvUjQ4Ffc6uQBqMQrqYMR53c7bRqD9rohCINkko0Y1a_hPSn&usqp=CAU

doaj.png  

images?q=tbn:ANd9GcSpOQFsFv3RdX0lIQJC3SwkFIA-CceHin_ujli_JrqBy3A32A_Tx_oMoIZn96EcrpLwTQg&usqp=CAU

ici2.png

asos-index.png

drji.png





The platforms of the journal are Google Scholar, CrossRef (DOI), ResearchBib, Open Access, COPE, ICMJE, NCBI, ORCID, Creative Commons, etc.

COPE-logo-300x199.jpgimages?q=tbn:ANd9GcQR6_qdgvxMP9owgnYzJ1M6CS_XzR_d7orTjA&usqp=CAU

icmje_1_orig.png

cc.logo.large.png

ncbi.pngimages?q=tbn:ANd9GcRBcJw8ia8S9TI4Fun5vj3HPzEcEKIvF_jtnw&usqp=CAU

ORCID_logo.png

1*mvsP194Golg0Dmo2rjJ-oQ.jpeg


Our Journal using the DergiPark system indexed are;

Ulakbim TR Dizin,  Index Copernicus, ICI World of JournalsDirectory of Research Journals Indexing (DRJI), General Impact FactorASOS Index, OpenAIRE, MIAR,  EuroPub, WorldCat (OCLC)DOAJ,  Türkiye Citation Index, Türk Medline Index, InfoBase Index


Our Journal using the DergiPark system platforms are;

Google, Google Scholar, CrossRef (DOI), ResearchBib, ICJME, COPE, NCBI, ORCID, Creative Commons, Open Access, and etc.


Journal articles are evaluated as "Double-Blind Peer Review". 

Our journal has adopted the Open Access Policy and articles in JHSM are Open Access and fully comply with Open Access instructions. All articles in the system can be accessed and read without a journal user.  https//dergipark.org.tr/tr/pub/jhsm/page/9535

Journal charge policy   https://dergipark.org.tr/tr/pub/jhsm/page/10912

Our journal has been indexed in DOAJ as of May 18, 2020.

Our journal has been indexed in TR-Dizin as of March 12, 2021.


17873

Articles published in Journal of Health Sciences and Medicine have open access and are licensed under the Creative Commons CC BY-NC-ND 4.0 International License.