Research Article
BibTex RIS Cite

İnme sonrası fiziksel rehabilitasyonda nöroplastisite üzerine bilimsel yayınların bibliyometrik analizi (2000–2024)

Year 2026, Volume: 9 Issue: 1, 213 - 220, 05.01.2026
https://doi.org/10.32322/jhsm.1828713
https://izlik.org/JA52KJ43GU

Abstract

Amaç: Bu çalışma, son yirmi yılda inme sonrası rehabilitasyonda nöroplastisite üzerine küresel bilimsel literatürü sistematik olarak analiz etmeyi, temel araştırma temalarını, tematik evrimi ve iş birliği ağlarını ortaya çıkarmayı amaçlamaktadır.

Yöntemler: Ocak 2000 ile Aralık 2024 arasındaki dönemi kapsayan Web of Science Core Collection veri tabanından elde edilen veriler kullanılarak bibliyometrik bir analiz yapılmıştır. Dahil etme kriterlerini karşılayan toplam 1.484 yayın incelenmiştir. Alanın entelektüel yapısını ve eğilimlerini görselleştirmek amacıyla VOSviewer yazılımı kullanılarak ortak oluşum (co-occurrence), ortak yazarlık (co-authorship), ortak atıf (co-citation) ve bibliyografik eşleştirme analizleri gerçekleştirilmiştir.

Bulgular: Analiz, 2010'lu yıllarda yayınlarda ılımlı bir artış olduğunu, 2020'den sonra ise bilimsel çıktıda keskin bir ivmelenme yaşandığını ortaya koymuştur. Anahtar kelime analizi, nörojenez ve nöroproteksiyon gibi temel biyolojik kavramlardan; beyin-bilgisayar arayüzleri (BCI), sanal gerçeklik ve dış iskeletler gibi teknoloji odaklı müdahalelere doğru belirgin bir tematik evrim olduğunu göstermiştir. Amerika Birleşik Devletleri, Çin ve İtalya en üretken katkı sağlayan ülkeler olarak belirlenmiş ve küresel çapta bağlantılı bir araştırma ağı oluşturdukları görülmüştür. Ortak atıf analizi, alanın mekanistik nörobilim ve klinik rehabilitasyon protokollerinden oluşan ikili bir temel üzerine inşa edildiğini vurgulamıştır.

Sonuç: İnme sonrası nöroplastisite araştırmaları, oldukça dinamik ve disiplinler arası bir alana dönüşmüştür. Bulgular, temel biyolojik araştırmalardan kişiselleştirilmiş ve teknoloji destekli rehabilitasyon stratejilerine doğru önemli bir kayma olduğunu göstermektedir. Gelecekteki eğilimler, fonksiyonel iyileşmeyi optimize etmek için nöromühendislik ve multimodal tedavilerin artan entegrasyonuna işaret etmektedir.

Ethical Statement

Bu çalışma, daha önce yayınlanmış literatürün sistematik bir incelemesine dayanan bibliyometrik bir analiz olduğundan, etik kurul onayı ve hasta onamı alınması uygulanabilir değildir (gerekmemektedir).

Supporting Institution

Yoktur

Thanks

Yoktur

References

  • Feigin VL, Stark BA, Johnson CO, et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet Neurol. 2021;20:795-820. doi:10.1016/S1474-4422 (21)00252-0
  • Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008;51(1):S225-S239. doi:10. 1044/1092-4388(2008/018)
  • Nudo RJ. Recovery after brain injury: mechanisms and principles. Front Hum Neurosci. 2013;7:887. doi:10.3389/fnhum.2013.00887
  • Buma F, Kwakkel G, Ramsey N. Understanding upper limb recovery after stroke. Restor Neurol Neurosci. 2013;31(6):707-722. doi:10.3233/RN N-130332
  • Ang KK, Guan C, Phua KS, et al. Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke. Front Neuroeng. 2014;7:30. doi:10.3389/fneng.2014.00030
  • Mehrholz J, Thomas S, Werner C, Kugler J, Pohl M, Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2017;5(5):CD006185. doi:10.1002/14651858.CD0061 85.pub4
  • Li C, Tu S, Xu S, et al. Research hotspots and frontiers of transcranial direct current stimulation in stroke: a bibliometric analysis. Brain Sci. 2022;13(1):15. doi:10.3390/brainsci13010015
  • van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523-538. doi:10.1007/s11192-009-0146-3
  • Chen C. Science mapping: a systematic review of the literature. J Data Inf Sci. 2017;2:1-40.
  • Tang S, Gao M, Cheng X, Ji L. Scientometric analysis of post-stroke depression research based on CiteSpace. Medicine (Baltimore). 2023;102( 18):e33633. doi:10.1097/MD.0000000000033633
  • Xu F, Bai L, Dai Z, Cheng H. Research hotspots and trends in post-stroke dysphagia: a bibliometric analysis. Front Neurosci. 2023;17:1275748. doi: 10.3389/fnins.2023.1275748
  • Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: an overview and guidelines. J Bus Res. 2021;133:285-296. doi:10.1016/j.jbusres.2021.04.070
  • Ward NS. Restoring brain function after stroke-bridging the gap between animals and humans. Nat Rev Neurol. 2017;13(4):244-255. doi: 10.1038/nrneurol.2017.34
  • Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF. Getting neurorehabilitation right: what can be learned from animal models?. Neurorehabil Neural Repair. 2012;26(8):923-931. doi:10.1177/1545968312 440745
  • Grefkes C, Ward NS. Cortical reorganization after stroke: how much and how functional?. Neuroscientist. 2014;20(1):56-70. doi:10.1177/10738584 13491147
  • Heiberg AV, Simonsen SA, Schytz HW, Iversen HK. Cortical hemodynamic response during cognitive Stroop test in acute stroke patients assessed by fNIRS. NeuroRehabilitation. 2023;52(2):199-217. doi:10.3233/NRE-220171
  • Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017;11(11): CD008349. doi:10.1002/14651858.CD008349.pub4
  • Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861-872. doi:10.1038/nrn2 735
  • Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. 2011;377(9778):1693-1702. doi:10.1016/S0140-6736(11)60325-5
  • Biasiucci A, Leeb R, Iturrate I, et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat Commun. 2018;9(1):2421. doi:10.1038/s41467-018-04673-z
  • Pazzaglia M, Molinari M. The embodiment of assistive devices-from wheelchair to exoskeleton. Phys Life Rev. 2016;16:163-175. doi:10.1016/j.p lrev.2015.11.006
  • Daly JJ, Wolpaw JR. Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 2008;7(11):1032-1043. doi:10.1016/S1474-4 422(08)70223-0
  • Kilgard MP, Rennaker RL, Alexander J, Dawson J. Vagus nerve stimulation paired with tactile training improved sensory function in a chronic stroke patient. NeuroRehabilitation. 2018;42(2):159-165. doi:10. 3233/NRE-172273
  • Stagg CJ, Johansen-Berg H. Studying the effects of transcranial direct-current stimulation in stroke recovery using magnetic resonance imaging. Front Hum Neurosci. 2013;7:857. doi:10.3389/fnhum.2013.00 857
  • Stinear CM, Lang CE, Zeiler S, Byblow WD. Advances and challenges in stroke rehabilitation. Lancet Neurol. 2020;19(4):348-360. doi:10.1016/S 1474-4422(19)30415-6
  • Hu J, Zou J, Wan Y, et al. Rehabilitation of motor function after stroke: a bibliometric analysis of global research from 2004 to 2022. Front Aging Neurosci. 2022;14:1024163. doi:10.3389/fnagi.2022.1024163

Post-stroke physical rehabilitation and neuroplasticity: a bibliometric analysis (2000-2024)

Year 2026, Volume: 9 Issue: 1, 213 - 220, 05.01.2026
https://doi.org/10.32322/jhsm.1828713
https://izlik.org/JA52KJ43GU

Abstract

Aims: This study aims to systematically analyze the global scientific literature on neuroplasticity in post-stroke rehabilitation to uncover major research themes, thematic evolution, and collaboration networks over the last two decades.
Methods: A bibliometric analysis was conducted using data retrieved from the Web of Science Core Collection database, covering the period from January 2000 to December 2024. A total of 1.484 publications met the inclusion criteria. VOS viewer software was utilized to perform co-occurrence, co-authorship, co-citation, and bibliographic coupling analyses to visualize the intellectual structure and trends of the field.
Results: A total of 1,484 publications were analyzed, revealing a sharp acceleration in scientific output since 2020, with a CAGR of 13.5% and a peak of 368 articles in 2023. Keyword mapping demonstrated a distinct thematic shift from foundational biological processes (2016-2018) toward advanced technological interventions like BCI, robotics, and virtual reality (2020-2022). The United States, China, and Italy emerged as the primary hubs of global productivity. Finally, co-citation and bibliographic coupling analyses delineate an integrated intellectual landscape sustained by four primary research axes: motor cortex plasticity, clinical protocols, non-invasive neuromodulation, and neuroimaging-based language recovery.
Conclusion: Post-stroke neuroplasticity research has transformed into a highly dynamic and interdisciplinary field. The findings indicate a significant shift from basic biological research towards personalized and technology-assisted rehabilitation strategies. Future trends suggest an increasing integration of neuroengineering and multimodal therapies to optimize functional recovery.

Ethical Statement

As this study is a bibliometric analysis based on a systematic review of previously published literature, ethical approval from an institutional review board and patient consent were not applicable.

Supporting Institution

None

Thanks

None

References

  • Feigin VL, Stark BA, Johnson CO, et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet Neurol. 2021;20:795-820. doi:10.1016/S1474-4422 (21)00252-0
  • Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008;51(1):S225-S239. doi:10. 1044/1092-4388(2008/018)
  • Nudo RJ. Recovery after brain injury: mechanisms and principles. Front Hum Neurosci. 2013;7:887. doi:10.3389/fnhum.2013.00887
  • Buma F, Kwakkel G, Ramsey N. Understanding upper limb recovery after stroke. Restor Neurol Neurosci. 2013;31(6):707-722. doi:10.3233/RN N-130332
  • Ang KK, Guan C, Phua KS, et al. Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke. Front Neuroeng. 2014;7:30. doi:10.3389/fneng.2014.00030
  • Mehrholz J, Thomas S, Werner C, Kugler J, Pohl M, Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2017;5(5):CD006185. doi:10.1002/14651858.CD0061 85.pub4
  • Li C, Tu S, Xu S, et al. Research hotspots and frontiers of transcranial direct current stimulation in stroke: a bibliometric analysis. Brain Sci. 2022;13(1):15. doi:10.3390/brainsci13010015
  • van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523-538. doi:10.1007/s11192-009-0146-3
  • Chen C. Science mapping: a systematic review of the literature. J Data Inf Sci. 2017;2:1-40.
  • Tang S, Gao M, Cheng X, Ji L. Scientometric analysis of post-stroke depression research based on CiteSpace. Medicine (Baltimore). 2023;102( 18):e33633. doi:10.1097/MD.0000000000033633
  • Xu F, Bai L, Dai Z, Cheng H. Research hotspots and trends in post-stroke dysphagia: a bibliometric analysis. Front Neurosci. 2023;17:1275748. doi: 10.3389/fnins.2023.1275748
  • Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: an overview and guidelines. J Bus Res. 2021;133:285-296. doi:10.1016/j.jbusres.2021.04.070
  • Ward NS. Restoring brain function after stroke-bridging the gap between animals and humans. Nat Rev Neurol. 2017;13(4):244-255. doi: 10.1038/nrneurol.2017.34
  • Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF. Getting neurorehabilitation right: what can be learned from animal models?. Neurorehabil Neural Repair. 2012;26(8):923-931. doi:10.1177/1545968312 440745
  • Grefkes C, Ward NS. Cortical reorganization after stroke: how much and how functional?. Neuroscientist. 2014;20(1):56-70. doi:10.1177/10738584 13491147
  • Heiberg AV, Simonsen SA, Schytz HW, Iversen HK. Cortical hemodynamic response during cognitive Stroop test in acute stroke patients assessed by fNIRS. NeuroRehabilitation. 2023;52(2):199-217. doi:10.3233/NRE-220171
  • Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017;11(11): CD008349. doi:10.1002/14651858.CD008349.pub4
  • Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861-872. doi:10.1038/nrn2 735
  • Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. 2011;377(9778):1693-1702. doi:10.1016/S0140-6736(11)60325-5
  • Biasiucci A, Leeb R, Iturrate I, et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat Commun. 2018;9(1):2421. doi:10.1038/s41467-018-04673-z
  • Pazzaglia M, Molinari M. The embodiment of assistive devices-from wheelchair to exoskeleton. Phys Life Rev. 2016;16:163-175. doi:10.1016/j.p lrev.2015.11.006
  • Daly JJ, Wolpaw JR. Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 2008;7(11):1032-1043. doi:10.1016/S1474-4 422(08)70223-0
  • Kilgard MP, Rennaker RL, Alexander J, Dawson J. Vagus nerve stimulation paired with tactile training improved sensory function in a chronic stroke patient. NeuroRehabilitation. 2018;42(2):159-165. doi:10. 3233/NRE-172273
  • Stagg CJ, Johansen-Berg H. Studying the effects of transcranial direct-current stimulation in stroke recovery using magnetic resonance imaging. Front Hum Neurosci. 2013;7:857. doi:10.3389/fnhum.2013.00 857
  • Stinear CM, Lang CE, Zeiler S, Byblow WD. Advances and challenges in stroke rehabilitation. Lancet Neurol. 2020;19(4):348-360. doi:10.1016/S 1474-4422(19)30415-6
  • Hu J, Zou J, Wan Y, et al. Rehabilitation of motor function after stroke: a bibliometric analysis of global research from 2004 to 2022. Front Aging Neurosci. 2022;14:1024163. doi:10.3389/fnagi.2022.1024163
There are 26 citations in total.

Details

Primary Language English
Subjects Neurology and Neuromuscular Diseases, Physical Medicine and Rehabilitation
Journal Section Research Article
Authors

Ayşe Melike Gerek 0000-0002-8655-8149

Submission Date November 22, 2025
Acceptance Date December 31, 2025
Publication Date January 5, 2026
DOI https://doi.org/10.32322/jhsm.1828713
IZ https://izlik.org/JA52KJ43GU
Published in Issue Year 2026 Volume: 9 Issue: 1

Cite

AMA 1.Gerek AM. Post-stroke physical rehabilitation and neuroplasticity: a bibliometric analysis (2000-2024). J Health Sci Med / JHSM. 2026;9(1):213-220. doi:10.32322/jhsm.1828713

Interuniversity Board (UAK) Equivalency: Article published in Ulakbim TR Index journal [10 POINTS], and Article published in other (excuding 1a, b, c) international indexed journal (1d) [5 POINTS].

The Directories (indexes) and Platforms we are included in are at the bottom of the page.

Note: Our journal is not WOS indexed and therefore is not classified as Q.

You can download Council of Higher Education (CoHG) [Yüksek Öğretim Kurumu (YÖK)] Criteria) decisions about predatory/questionable journals and the author's clarification text and journal charge policy from your browser. https://dergipark.org.tr/tr/journal/2316/file/4905/show







The indexes of the journal are ULAKBİM TR Dizin, ICI World of Journals, DOAJ, Directory of Research Journals Indexing (DRJI), General Impact Factor, ASOS Index, WorldCat (OCLC), MIAR, OpenAIRE, Türkiye Citation Index, Türk Medline Index, InfoBase Index, Scilit, etc.

       images?q=tbn:ANd9GcRB9r6zRLDl0Pz7om2DQkiTQXqDtuq64Eb1Qg&usqp=CAU

500px-WorldCat_logo.svg.png

atifdizini.png

logo_world_of_journals_no_margin.png

images?q=tbn%3AANd9GcTNpvUjQ4Ffc6uQBqMQrqYMR53c7bRqD9rohCINkko0Y1a_hPSn&usqp=CAU

doaj.png  

images?q=tbn:ANd9GcSpOQFsFv3RdX0lIQJC3SwkFIA-CceHin_ujli_JrqBy3A32A_Tx_oMoIZn96EcrpLwTQg&usqp=CAU

ici2.png

asos-index.png

drji.png





The platforms of the journal are Google Scholar, CrossRef (DOI), ResearchBib, Open Access, COPE, ICMJE, NCBI, ORCID, Creative Commons, etc.

COPE-logo-300x199.jpgimages?q=tbn:ANd9GcQR6_qdgvxMP9owgnYzJ1M6CS_XzR_d7orTjA&usqp=CAU

icmje_1_orig.png

cc.logo.large.png

ncbi.pngimages?q=tbn:ANd9GcRBcJw8ia8S9TI4Fun5vj3HPzEcEKIvF_jtnw&usqp=CAU

ORCID_logo.png

1*mvsP194Golg0Dmo2rjJ-oQ.jpeg


Our Journal using the DergiPark system indexed are;

Ulakbim TR Dizin,  Index Copernicus, ICI World of JournalsDirectory of Research Journals Indexing (DRJI), General Impact FactorASOS Index, OpenAIRE, MIAR,  EuroPub, WorldCat (OCLC)DOAJ,  Türkiye Citation Index, Türk Medline Index, InfoBase Index


Our Journal using the DergiPark system platforms are;

Google, Google Scholar, CrossRef (DOI), ResearchBib, ICJME, COPE, NCBI, ORCID, Creative Commons, Open Access, and etc.


Journal articles are evaluated as "Double-Blind Peer Review". 

Our journal has adopted the Open Access Policy and articles in JHSM are Open Access and fully comply with Open Access instructions. All articles in the system can be accessed and read without a journal user.  https//dergipark.org.tr/tr/pub/jhsm/page/9535

Journal charge policy   https://dergipark.org.tr/tr/pub/jhsm/page/10912

Our journal has been indexed in DOAJ as of May 18, 2020.

Our journal has been indexed in TR-Dizin as of March 12, 2021.


17873

Articles published in Journal of Health Sciences and Medicine have open access and are licensed under the Creative Commons CC BY-NC-ND 4.0 International License.