Araştırma Makalesi
BibTex RIS Kaynak Göster

Self-Efficacy Levels of Pre-Service Science Teachers Regarding STEM Practices

Yıl 2025, Cilt: 7 Sayı: 1, 44 - 53, 28.06.2025
https://doi.org/10.47156/jide.1686795

Öz

The aim of this study is to investigate the self-efficacy levels of pre-service science teachers in relation to STEM practices. For this purpose, the research was conducted during the 2021–2022 academic year with 110 volunteer pre-service teachers enrolled in the third and fourth years of the Department of Science Education at a public university. In collecting the data, the general survey model, one of the quantitative research methods, was utilized. The data for the study were gathered through a convenience sampling method. As the data collection instrument, the "STEM Practices Self-Efficacy Scale" developed by Özdemir, Yaman, and Vural (2018) was employed. The scale consists of 18 items and is structured as a five-point Likert-type scale. The Cronbach’s alpha internal consistency coefficient of the scale was calculated as .97. The data obtained from this study were analyzed using the SPSS 21 statistical analysis software. Overall, the findings of the study indicated that the pre-service teachers possessed an adequate level of self-efficacy regarding STEM practices. It is anticipated that the results of this study will provide guidance for program developers and teachers concerning the implementation of STEM education in Turkey.

Etik Beyan

The research was conducted in accordance with the articles outlined in the Directive on Scientific Research and Publication Ethics of the Council of Higher Education. We declare that there is no case of ethical misconduct.

Kaynakça

  • Akgündüz, D., Aydeniz, M., Çakmakçı, G., Çavaş, B., Çorlu, M. S., Öner, T., & Özdemir, S. (2015). STEM eğitimi Türkiye raporu: Günün modası mı yoksa gereksinim mi? [A report on STEM Education in Turkey: A provisional agenda or a necessity?]. İstanbul: Scala.
  • Aslan Tutak, F., Akaygun, S., & Tezsezen, S. (2017). İşbirlikli FeTeMM (fen, teknoloji, mühendislik, matematik) eğitimi uygulaması: Kimya ve matematik öğretmen adaylarının fetemm farkındalıklarının incelenmesi [Application of cooperative STEM (science, technology, engineering, mathematics) education: Examining the STEM awareness of prospective chemistry and mathematics teachers.]. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 32(4), 794-816.
  • Asunda, P. A. (2012). Standards for technological literacy and STEM education delivery through career and technical education programs. Journal of Technology Education, 23(2), 44-60.
  • Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37(2), 122–147.
  • Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.
  • Berlin, D. F. & Lee, H. (2005). Integrating science and mathematics education: Historical analysis. School Science and Mathematics, 105(1), 15–24.
  • Berlin, D. F. & White, A. L. (1994). The Berlin-white integrated science and mathematics model. School Science and Mathematics, 94(1), 2-4.
  • Boone, H. N. & Boone, D. A. (2012) Analyzing Likert data. The Journal of Extension, 50(2), 1-5.
  • Bryan, L. A., Moore, T. J., Johnson, C. C., & Roehrig, G. H. (2015). Integrated STEM education. In Carla C. Johnson, Erin E. Peters-Burton, & Tamara J. Moore (Ed.), STEM road map: a framework for ıntegrated stem education. New York: Taylor and Francis.
  • Bybee, R. W. (2010a). Advancing STEM education: A 2020 vision. Technology and Engineering Teacher, 70(1), 30-35.
  • Bybee, R. W. (2010b). What is STEM education? Science, 329(5995), 996.
  • Chesloff, J. D. (2013). STEM education must start in early childhood. Education Week, 32(23), 27-32.
  • Cohen, L., Manion, L., & Morrison, K. (2007). Research methods in education. London: Routledge Taylor & Francis Group.
  • Çavaş, B., Bulut, Ç., Holbrook, J., & Rannikmae, M. (2013). Fen eğitimine mühendislik odaklı bir yaklaşım: ENGINEER projesi ve uygulamaları [An engineering-oriented approach to science education: ENGINEER project and its applications]. Fen Bilimleri Öğretimi Dergisi, 1(1), 12-22.
  • Çevik, M., Danıştay, A., & Yağcı, A. (2017). Ortaokul öğretmenlerinin FeTeMM (fen- teknoloji-mühendislik-matematik) farkındalıklarının farklı değişkenlere göre değerlendirilmesi. Sakarya University Journal of Education, 7(3), 584-599.
  • Çorlu, M. S., Capraro, R. M., & Capraro, M. M. (2014). Introducing STEM education: Implications for educating our teachers for the age of innovation [Evaluation of middle school teachers' STEM (science-technology-engineering-mathematics) awareness according to different variables]. Education and Science, 39(171), 74-84.
  • Dadacan, G. (2021) Öğretmen adaylarının STEM öğretimiyle ilgili özyeterlik farkındalık ve yönelimlerinin çeşitli değişkenler açısından incelenmesi [The research of the pre-service teachers' self sufficiency awareness and orientation in STEM education]. Yüksek Lisans Tezi. Hacettepe Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara.
  • Dorman, J. P. (2001). Associations between classroom environment and academic efficacy. Learning Environments Research, 4, 243–257.
  • Dugger Jr, W. E. (2003). The relationship between technology, science, engineering, and mathematics. Annual Conference of the American Vocational Association, Nashville.
  • Elmalı, Ş. & Balkan Kıyıcı, F. (2017). Türkiye’de yayınlanmış FeTeMM eğitimi ile ilgili çalışmaların incelenmesi [Examining the studies on STEM education published in Turkey]. Sakarya University Journal of Education, 7(3), 684-696.
  • Eroğlu, S. & Bektaş, O. (2016). STEM eğitimi almış fen bilimleri öğretmenlerinin STEM temelli ders etkinlikleri hakkında görüşleri [Opinions of science teachers with STEM training on STEM-based course activities]. Eğitimde Nitel Araştırmalar Dergisi, 4(3), 43-67.
  • Ertmer, P. & Ottenbreit-Leftwich, A. T. (2010). Teacher technology change: how knowledge, confidence, beliefs and culture ıntersect. Journal of Research on Technology in Education, 42, 255-284.
  • George, D. & Mallery, P. (2003). SPSS for Windows Step by Step: A Simple Guide and Reference. Boston: Allyn & Bacon.
  • Gonzalez, H. B. & Kuenzi, J. J. (2012). Science, technology, engineering, and mathematics (STEM) education: A primer. Washington: DC, Congressional Research Service, Library of Congress.
  • Gravetter, F. J. & Forzano, L. B. (2012). Research methods for the behavioral sciences. Belmont, CA: Wadsworth.
  • Günay, D. (2001). Mühendislik, teknoloji ve tarih [Engineering, technology and history]. Mimar ve Mühendis Dergisi, 30, 6-14.
  • Hacıoğlu, Y., Yamak, H., & Kavak, N. (2016). Pre-service science teachers’ cognitive structures regarding science, technology, engineering, mathematics (STEM) and science education. Journal of Turkish Science Education, 11(1), 3-23.
  • Hacıoğlu, Y. , Yamak, H. & Kavak, N. (2017). The opinions of prospective science teachers regarding stem education: the engineering design based science education. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 37(2) , 649-684.
  • Hacıömeroğlu, G. (2018). Examining elementary pre-service teachers’ science, technology, engineering, and mathematics (STEM) teaching intention. International Online Journal of Educational Sciences, 10(1), 183-194. Harkema, J., Jadrich, J., & Bruxvoort, C. (2009) Science and engineering: Two models of laboratory investigation. The Science Teacher, 76(9), 27-31.
  • Hartzler, D. S. (2000). A meta-analysis of studies conducted on integrated curriculum programs and their effects on student achievement. PhD Thesis, Indiana Universitesi, USA.
  • Herdem, K. & Ünal, İ. (2018). STEM eğitimi üzerine yapılan çalışmaların analizi: bir meta sentez çalışması [Analysis of studies on STEM education: a meta-synthesis study]. Marmara Üniversitesi Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi, 48(48), 145-163.
  • Hernandez, J. F. (2014). The implement of an elementary STEM learning team and the effect on teacher self- efifficacy: An action research study. PhD Thesis, Capella University, Minnesota.
  • Kang, M., Kim, J., & Kim, Y. (2013). Learning outcomes of the teacher training program for steam education. Korean Journal of the Learning Sciences, 7(2), 18-28.
  • Karasar, N. (2017). Bilimsel araştırma yöntemi. Ankara: Nobel Yayıncılık.
  • Koray, Ö. (2003). Yaratıcı düşünceye dayalı fen öğretiminin öğretmen adaylarının öz yeterlik, yaratıcılık ve problem çözme düzeylerine etkisi.[ The effect of creative thinking based science teaching on self-efficacy, creativity and problem solving levels of prospective teachers] Doktora Tezi. Gazi Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara.
  • Köklü, N., Büyüköztürk, Ş., & Çokluk-Bökeoğlu, Ö. (2006). Sosyal bilimler için istatistik[Statistics for social sciences]. Ankara: Pegem.
  • Martinello, M. L. (2000). Interdisciplinary inquiry in teaching and learning. Upper Saddle River: Gillian.
  • Martin Páez, T., Aguilera, D., Perales Palacios, F. J., & Vílchez González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799-822.
  • MEB- Milli Eğitim Bakanalığı (2018). Fen bilimleri dersi öğretim programı (İlkokul ve ortaokul 3, 4, 5, 6, 7 ve 8. sınıflar) [Science course curriculum (Primary school and secondary school 3rd, 4th, 5th, 6th, 7th and 8th grades)]. Ankara: Milli Eğitim Bakanlığı.
  • Merrill, C. & Daugherty, J. (2009). The future of TE masters degrees: STEM.
  • Moore, T. & Richards, L. G. (2012). P-12 engineering education research and practice. Introduction to a Special Issue of Advances in Engineering Education, 3(2), 1-9.
  • Moore, T. J., Stohlmann, M. S., Wang, H. H., Tank, K. M., & Roehrig, G. H. (2014). Implementation and integration of engineering in K-12 STEM education. In Johannes Strobel, Şenay Purzer & Monica E. Cardella (Ed.), Engineering in precollege settings: Research into practice. Rotterdam, the Netherlands: Sense.
  • Morrison, J. (2006). STEM education monograph series attributes of STEM education: The student, the school, the classroom. TIES (Teaching Institute for Excellence in STEM), 20, 1-20.
  • Nadelson, L. S., Seifert, A., Moll, A. J., & Coats, B. (2012). I-STEM summer institute:An integrated approach to teacher professional development in STEM. Journal of STEM Education, 12(2), 69-83.
  • Niess, M. L. (2005). Preparing teachers to teach science and mathematics with technology: Developing a technology pedagogical content knowledge. Teaching and Teacher Education, 21, 509–523.
  • Özçelik, C. (2015). Disiplinler arası öğretim yaklaşımına dayalı hazırlanan öğretim etkinliklerinin, öğrencilerin geometrik cisimlerin hacimleri konusundaki akademik başarılarına ve problem çözme becerilerine etkisi [The effects of teaching activities based on interdisciplinary teaching approach on students' academic achievement and problem solving skills on volumes of geometric objects]. Yüksek Lisans Tezi, Bartın Üniversitesi, Eğitim Bilimleri Enstitüsü, Bartın.
  • Özdemir, A., Yaman, C., & Vural, R. A. (2018). STEM uygulamaları öğretmen öz-yeterlik ölçeğinin geliştirilmesi: bir geçerlik ve güvenirlik çalışması. Adnan Menderes Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 5(2), 93-104.
  • Pekbay, C. (2017). Fen teknoloji mühendislik matematik etkinliklerinin ortaokul öğrencileri üzerindeki etkileri [Effects of science technology engineering mathematics activities on secondary school students]. Doktora Tezi, Hacettepe Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.
  • Perkins, D. N. (1994). The intelligent eye. Santa Monica. CA: The Getty Center for Education in the Arts.
  • Ritter, J., Boone, W., & Rubba, P. (2001). Development of an instrument to assess prospective elementary teacher selfefficacy beliefs about equitable science teaching and learning (sebest). Journal of Science Teacher Education, 12(3), 175-198.
  • Sanders, M. (2009). Integrative STEM education: primer. The Technology Teacher, 68(4), 20-26.
  • Sarı, U. & Yazıcı, Y. Y. (2018). STEM eğitiminin fen öğrenimine yönelik motivasyona etkisi. Uluslararası Öğrenme, Öğretim ve Eğitim Araştırmaları. International Learning, Teaching and Educational Research Congress – ILTER, Amasya.
  • Sim, J. & Wright, C. (2002). Research in health care: concepts, designs and methods. United Kingdom, Cheltenham: Nelson Thornes.
  • Sowell, S., Southerland, S.A., & Granger, E. (2006). Exploring the construct of teacher pedagogical discontentment: A tool to understand teachers’ openness to reform.
  • Soylu, Ş. (2016). STEM education in early childhood in Turkey [STEM education in early childhood in Turkey]. Journal of Educational and Instructional Studies, 6(1), 38-47.
  • Sungur Gül, K. & Marulcu, İ. (2014). Yöntem olarak mühendislik-dizayna ve ders materyali olarak legolara öğretmen ile öğretmen adaylarının bakış açılarının incelenmesi [Examining the perspectives of teachers and prospective teachers on engineering-design as a method and legos as course materials]. Electronic Turkish Studies, 9(2), 761-786.
  • Şahin, A., Ayar, M. C., & Adıgüzel, T. (2014). STEM related after-school program activities and associated outcomes on student learning. Educational Sciences: Theory and Practice, 14(1), 309-322.
  • Thomasian, J. (2011). Building a science, technology, engineering, and math education agenda: An update of state actions. New York: Battelle Memorial Institute, and Carnegie Corporation.
  • Tomte, C., Enochsson, A. B., Buskqvist, U., & Karstein, A. (2015). Educating online student teachers to master professional digital competence: The TPACK-framework goes online. Computers & Education, 84, 26-35.
  • Tondeur, J., et al. (2011). Preparing pre-service teachers to integrate technology in education: A synthesis of qual-itative evidence, Computers & Education 59(1).
  • Ünlü, C. & Şenler, B. (2020). STEM ebeveyn farkındalık ölçeğinin Türkçeye uyarlaması: geçerlik ve güvenirlik çalışması [Adaptation of the STEM parental awareness scale into Turkish: a validity and reliability study]. Eğitim Kuram ve Uygulama Araştırmaları Dergisi, 6(2), 189-198.
  • Wai, J., Lubinski, D., & Benbow, C. P. (2010). Accomplishment in science, technology, engineering, and mathematics (STEM) and ıts relation to stem educational dose: a 25-year longitudinal study. Journal of Educational Psychology, 102(4), 860-871.
  • Wang, H. H. (2012). A new era of science education: science teachers ‘perceptions and classroom practices of science, technology, engineering and mathematics (STEM) integration. PhD Thesis, Minnesota Üniversitesi, Minneapolis, USE.
  • Watt, H., Richardson, P. W., & Pietsch, J. (2007). Choosing to teach in the “STEM” disciplines: Characteristics and motivations of science, ICT, and mathematics teachers. Mathematics: Essential Research, Essential Practice.
  • Wendell, K. B. (2008). The theoretical and empirical basis for design-based science instruction for children. Unpublished Qualifying Paper, Tufts Üniversitesi, Boston.
  • Yaman, S. (2003). Fen bilgisi eğitiminde probleme dayalı öğrenmenin öğrenme ürünlerine etkisi [The effect of problem-based learning on learning products in science education]. Doktora Tezi, Gazi Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara.
  • Yıldırım, B. & Altun, Y. (2015). STEM eğitim ve mühendislik uygulamalarının fen bilgisi laboratuar dersindeki etkilerinin incelenmesi [Examining the effects of STEM education and engineering practices on science laboratory courses]. El-Cezerî Fen ve Mühendislik Dergisi, 2(2), 28-40.
  • Yıldırım, B. & Türk, C. (2018). Sınıf öğretmeni adaylarının stem eğitimine yönelik görüşleri: uygulamalı bir çalışma. Trakya Üniversitesi Eğitim Fakültesi Dergisi, 8(2), 195-213.
  • Yıldırım, B. (2016). An analyses and meta-synthesis of research on STEM education, Journal of Education and Practice, 7(34), 23-33.

Self-Efficacy Levels of Pre-Service Science Teachers Regarding STEM Practices

Yıl 2025, Cilt: 7 Sayı: 1, 44 - 53, 28.06.2025
https://doi.org/10.47156/jide.1686795

Öz

The aim of this study is to investigate the self-efficacy levels of pre-service science teachers in relation to STEM practices. For this purpose, the research was conducted during the 2021–2022 academic year with 110 volunteer pre-service teachers enrolled in the third and fourth years of the Department of Science Education at a public university. In collecting the data, the general survey model, one of the quantitative research methods, was utilized. The data for the study were gathered through a convenience sampling method. As the data collection instrument, the "STEM Practices Self-Efficacy Scale" developed by Özdemir, Yaman, and Vural (2018) was employed. The scale consists of 18 items and is structured as a five-point Likert-type scale. The Cronbach’s alpha internal consistency coefficient of the scale was calculated as .97. The data obtained from this study were analyzed using the SPSS 21 statistical analysis software. Overall, the findings of the study indicated that the pre-service teachers possessed an adequate level of self-efficacy regarding STEM practices. It is anticipated that the results of this study will provide guidance for program developers and teachers concerning the implementation of STEM education in Turkey.

Etik Beyan

The research was conducted in accordance with the articles outlined in the Directive on Scientific Research and Publication Ethics of the Council of Higher Education. We declare that there is no case of ethical misconduct.

Kaynakça

  • Akgündüz, D., Aydeniz, M., Çakmakçı, G., Çavaş, B., Çorlu, M. S., Öner, T., & Özdemir, S. (2015). STEM eğitimi Türkiye raporu: Günün modası mı yoksa gereksinim mi? [A report on STEM Education in Turkey: A provisional agenda or a necessity?]. İstanbul: Scala.
  • Aslan Tutak, F., Akaygun, S., & Tezsezen, S. (2017). İşbirlikli FeTeMM (fen, teknoloji, mühendislik, matematik) eğitimi uygulaması: Kimya ve matematik öğretmen adaylarının fetemm farkındalıklarının incelenmesi [Application of cooperative STEM (science, technology, engineering, mathematics) education: Examining the STEM awareness of prospective chemistry and mathematics teachers.]. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 32(4), 794-816.
  • Asunda, P. A. (2012). Standards for technological literacy and STEM education delivery through career and technical education programs. Journal of Technology Education, 23(2), 44-60.
  • Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37(2), 122–147.
  • Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.
  • Berlin, D. F. & Lee, H. (2005). Integrating science and mathematics education: Historical analysis. School Science and Mathematics, 105(1), 15–24.
  • Berlin, D. F. & White, A. L. (1994). The Berlin-white integrated science and mathematics model. School Science and Mathematics, 94(1), 2-4.
  • Boone, H. N. & Boone, D. A. (2012) Analyzing Likert data. The Journal of Extension, 50(2), 1-5.
  • Bryan, L. A., Moore, T. J., Johnson, C. C., & Roehrig, G. H. (2015). Integrated STEM education. In Carla C. Johnson, Erin E. Peters-Burton, & Tamara J. Moore (Ed.), STEM road map: a framework for ıntegrated stem education. New York: Taylor and Francis.
  • Bybee, R. W. (2010a). Advancing STEM education: A 2020 vision. Technology and Engineering Teacher, 70(1), 30-35.
  • Bybee, R. W. (2010b). What is STEM education? Science, 329(5995), 996.
  • Chesloff, J. D. (2013). STEM education must start in early childhood. Education Week, 32(23), 27-32.
  • Cohen, L., Manion, L., & Morrison, K. (2007). Research methods in education. London: Routledge Taylor & Francis Group.
  • Çavaş, B., Bulut, Ç., Holbrook, J., & Rannikmae, M. (2013). Fen eğitimine mühendislik odaklı bir yaklaşım: ENGINEER projesi ve uygulamaları [An engineering-oriented approach to science education: ENGINEER project and its applications]. Fen Bilimleri Öğretimi Dergisi, 1(1), 12-22.
  • Çevik, M., Danıştay, A., & Yağcı, A. (2017). Ortaokul öğretmenlerinin FeTeMM (fen- teknoloji-mühendislik-matematik) farkındalıklarının farklı değişkenlere göre değerlendirilmesi. Sakarya University Journal of Education, 7(3), 584-599.
  • Çorlu, M. S., Capraro, R. M., & Capraro, M. M. (2014). Introducing STEM education: Implications for educating our teachers for the age of innovation [Evaluation of middle school teachers' STEM (science-technology-engineering-mathematics) awareness according to different variables]. Education and Science, 39(171), 74-84.
  • Dadacan, G. (2021) Öğretmen adaylarının STEM öğretimiyle ilgili özyeterlik farkındalık ve yönelimlerinin çeşitli değişkenler açısından incelenmesi [The research of the pre-service teachers' self sufficiency awareness and orientation in STEM education]. Yüksek Lisans Tezi. Hacettepe Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara.
  • Dorman, J. P. (2001). Associations between classroom environment and academic efficacy. Learning Environments Research, 4, 243–257.
  • Dugger Jr, W. E. (2003). The relationship between technology, science, engineering, and mathematics. Annual Conference of the American Vocational Association, Nashville.
  • Elmalı, Ş. & Balkan Kıyıcı, F. (2017). Türkiye’de yayınlanmış FeTeMM eğitimi ile ilgili çalışmaların incelenmesi [Examining the studies on STEM education published in Turkey]. Sakarya University Journal of Education, 7(3), 684-696.
  • Eroğlu, S. & Bektaş, O. (2016). STEM eğitimi almış fen bilimleri öğretmenlerinin STEM temelli ders etkinlikleri hakkında görüşleri [Opinions of science teachers with STEM training on STEM-based course activities]. Eğitimde Nitel Araştırmalar Dergisi, 4(3), 43-67.
  • Ertmer, P. & Ottenbreit-Leftwich, A. T. (2010). Teacher technology change: how knowledge, confidence, beliefs and culture ıntersect. Journal of Research on Technology in Education, 42, 255-284.
  • George, D. & Mallery, P. (2003). SPSS for Windows Step by Step: A Simple Guide and Reference. Boston: Allyn & Bacon.
  • Gonzalez, H. B. & Kuenzi, J. J. (2012). Science, technology, engineering, and mathematics (STEM) education: A primer. Washington: DC, Congressional Research Service, Library of Congress.
  • Gravetter, F. J. & Forzano, L. B. (2012). Research methods for the behavioral sciences. Belmont, CA: Wadsworth.
  • Günay, D. (2001). Mühendislik, teknoloji ve tarih [Engineering, technology and history]. Mimar ve Mühendis Dergisi, 30, 6-14.
  • Hacıoğlu, Y., Yamak, H., & Kavak, N. (2016). Pre-service science teachers’ cognitive structures regarding science, technology, engineering, mathematics (STEM) and science education. Journal of Turkish Science Education, 11(1), 3-23.
  • Hacıoğlu, Y. , Yamak, H. & Kavak, N. (2017). The opinions of prospective science teachers regarding stem education: the engineering design based science education. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 37(2) , 649-684.
  • Hacıömeroğlu, G. (2018). Examining elementary pre-service teachers’ science, technology, engineering, and mathematics (STEM) teaching intention. International Online Journal of Educational Sciences, 10(1), 183-194. Harkema, J., Jadrich, J., & Bruxvoort, C. (2009) Science and engineering: Two models of laboratory investigation. The Science Teacher, 76(9), 27-31.
  • Hartzler, D. S. (2000). A meta-analysis of studies conducted on integrated curriculum programs and their effects on student achievement. PhD Thesis, Indiana Universitesi, USA.
  • Herdem, K. & Ünal, İ. (2018). STEM eğitimi üzerine yapılan çalışmaların analizi: bir meta sentez çalışması [Analysis of studies on STEM education: a meta-synthesis study]. Marmara Üniversitesi Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi, 48(48), 145-163.
  • Hernandez, J. F. (2014). The implement of an elementary STEM learning team and the effect on teacher self- efifficacy: An action research study. PhD Thesis, Capella University, Minnesota.
  • Kang, M., Kim, J., & Kim, Y. (2013). Learning outcomes of the teacher training program for steam education. Korean Journal of the Learning Sciences, 7(2), 18-28.
  • Karasar, N. (2017). Bilimsel araştırma yöntemi. Ankara: Nobel Yayıncılık.
  • Koray, Ö. (2003). Yaratıcı düşünceye dayalı fen öğretiminin öğretmen adaylarının öz yeterlik, yaratıcılık ve problem çözme düzeylerine etkisi.[ The effect of creative thinking based science teaching on self-efficacy, creativity and problem solving levels of prospective teachers] Doktora Tezi. Gazi Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara.
  • Köklü, N., Büyüköztürk, Ş., & Çokluk-Bökeoğlu, Ö. (2006). Sosyal bilimler için istatistik[Statistics for social sciences]. Ankara: Pegem.
  • Martinello, M. L. (2000). Interdisciplinary inquiry in teaching and learning. Upper Saddle River: Gillian.
  • Martin Páez, T., Aguilera, D., Perales Palacios, F. J., & Vílchez González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799-822.
  • MEB- Milli Eğitim Bakanalığı (2018). Fen bilimleri dersi öğretim programı (İlkokul ve ortaokul 3, 4, 5, 6, 7 ve 8. sınıflar) [Science course curriculum (Primary school and secondary school 3rd, 4th, 5th, 6th, 7th and 8th grades)]. Ankara: Milli Eğitim Bakanlığı.
  • Merrill, C. & Daugherty, J. (2009). The future of TE masters degrees: STEM.
  • Moore, T. & Richards, L. G. (2012). P-12 engineering education research and practice. Introduction to a Special Issue of Advances in Engineering Education, 3(2), 1-9.
  • Moore, T. J., Stohlmann, M. S., Wang, H. H., Tank, K. M., & Roehrig, G. H. (2014). Implementation and integration of engineering in K-12 STEM education. In Johannes Strobel, Şenay Purzer & Monica E. Cardella (Ed.), Engineering in precollege settings: Research into practice. Rotterdam, the Netherlands: Sense.
  • Morrison, J. (2006). STEM education monograph series attributes of STEM education: The student, the school, the classroom. TIES (Teaching Institute for Excellence in STEM), 20, 1-20.
  • Nadelson, L. S., Seifert, A., Moll, A. J., & Coats, B. (2012). I-STEM summer institute:An integrated approach to teacher professional development in STEM. Journal of STEM Education, 12(2), 69-83.
  • Niess, M. L. (2005). Preparing teachers to teach science and mathematics with technology: Developing a technology pedagogical content knowledge. Teaching and Teacher Education, 21, 509–523.
  • Özçelik, C. (2015). Disiplinler arası öğretim yaklaşımına dayalı hazırlanan öğretim etkinliklerinin, öğrencilerin geometrik cisimlerin hacimleri konusundaki akademik başarılarına ve problem çözme becerilerine etkisi [The effects of teaching activities based on interdisciplinary teaching approach on students' academic achievement and problem solving skills on volumes of geometric objects]. Yüksek Lisans Tezi, Bartın Üniversitesi, Eğitim Bilimleri Enstitüsü, Bartın.
  • Özdemir, A., Yaman, C., & Vural, R. A. (2018). STEM uygulamaları öğretmen öz-yeterlik ölçeğinin geliştirilmesi: bir geçerlik ve güvenirlik çalışması. Adnan Menderes Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 5(2), 93-104.
  • Pekbay, C. (2017). Fen teknoloji mühendislik matematik etkinliklerinin ortaokul öğrencileri üzerindeki etkileri [Effects of science technology engineering mathematics activities on secondary school students]. Doktora Tezi, Hacettepe Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.
  • Perkins, D. N. (1994). The intelligent eye. Santa Monica. CA: The Getty Center for Education in the Arts.
  • Ritter, J., Boone, W., & Rubba, P. (2001). Development of an instrument to assess prospective elementary teacher selfefficacy beliefs about equitable science teaching and learning (sebest). Journal of Science Teacher Education, 12(3), 175-198.
  • Sanders, M. (2009). Integrative STEM education: primer. The Technology Teacher, 68(4), 20-26.
  • Sarı, U. & Yazıcı, Y. Y. (2018). STEM eğitiminin fen öğrenimine yönelik motivasyona etkisi. Uluslararası Öğrenme, Öğretim ve Eğitim Araştırmaları. International Learning, Teaching and Educational Research Congress – ILTER, Amasya.
  • Sim, J. & Wright, C. (2002). Research in health care: concepts, designs and methods. United Kingdom, Cheltenham: Nelson Thornes.
  • Sowell, S., Southerland, S.A., & Granger, E. (2006). Exploring the construct of teacher pedagogical discontentment: A tool to understand teachers’ openness to reform.
  • Soylu, Ş. (2016). STEM education in early childhood in Turkey [STEM education in early childhood in Turkey]. Journal of Educational and Instructional Studies, 6(1), 38-47.
  • Sungur Gül, K. & Marulcu, İ. (2014). Yöntem olarak mühendislik-dizayna ve ders materyali olarak legolara öğretmen ile öğretmen adaylarının bakış açılarının incelenmesi [Examining the perspectives of teachers and prospective teachers on engineering-design as a method and legos as course materials]. Electronic Turkish Studies, 9(2), 761-786.
  • Şahin, A., Ayar, M. C., & Adıgüzel, T. (2014). STEM related after-school program activities and associated outcomes on student learning. Educational Sciences: Theory and Practice, 14(1), 309-322.
  • Thomasian, J. (2011). Building a science, technology, engineering, and math education agenda: An update of state actions. New York: Battelle Memorial Institute, and Carnegie Corporation.
  • Tomte, C., Enochsson, A. B., Buskqvist, U., & Karstein, A. (2015). Educating online student teachers to master professional digital competence: The TPACK-framework goes online. Computers & Education, 84, 26-35.
  • Tondeur, J., et al. (2011). Preparing pre-service teachers to integrate technology in education: A synthesis of qual-itative evidence, Computers & Education 59(1).
  • Ünlü, C. & Şenler, B. (2020). STEM ebeveyn farkındalık ölçeğinin Türkçeye uyarlaması: geçerlik ve güvenirlik çalışması [Adaptation of the STEM parental awareness scale into Turkish: a validity and reliability study]. Eğitim Kuram ve Uygulama Araştırmaları Dergisi, 6(2), 189-198.
  • Wai, J., Lubinski, D., & Benbow, C. P. (2010). Accomplishment in science, technology, engineering, and mathematics (STEM) and ıts relation to stem educational dose: a 25-year longitudinal study. Journal of Educational Psychology, 102(4), 860-871.
  • Wang, H. H. (2012). A new era of science education: science teachers ‘perceptions and classroom practices of science, technology, engineering and mathematics (STEM) integration. PhD Thesis, Minnesota Üniversitesi, Minneapolis, USE.
  • Watt, H., Richardson, P. W., & Pietsch, J. (2007). Choosing to teach in the “STEM” disciplines: Characteristics and motivations of science, ICT, and mathematics teachers. Mathematics: Essential Research, Essential Practice.
  • Wendell, K. B. (2008). The theoretical and empirical basis for design-based science instruction for children. Unpublished Qualifying Paper, Tufts Üniversitesi, Boston.
  • Yaman, S. (2003). Fen bilgisi eğitiminde probleme dayalı öğrenmenin öğrenme ürünlerine etkisi [The effect of problem-based learning on learning products in science education]. Doktora Tezi, Gazi Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara.
  • Yıldırım, B. & Altun, Y. (2015). STEM eğitim ve mühendislik uygulamalarının fen bilgisi laboratuar dersindeki etkilerinin incelenmesi [Examining the effects of STEM education and engineering practices on science laboratory courses]. El-Cezerî Fen ve Mühendislik Dergisi, 2(2), 28-40.
  • Yıldırım, B. & Türk, C. (2018). Sınıf öğretmeni adaylarının stem eğitimine yönelik görüşleri: uygulamalı bir çalışma. Trakya Üniversitesi Eğitim Fakültesi Dergisi, 8(2), 195-213.
  • Yıldırım, B. (2016). An analyses and meta-synthesis of research on STEM education, Journal of Education and Practice, 7(34), 23-33.
Toplam 69 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fen Bilgisi Eğitimi
Bölüm Makaleler
Yazarlar

Burçak Ata 0000-0001-8046-550X

Alev Çetin 0000-0002-8907-1344

Yayımlanma Tarihi 28 Haziran 2025
Gönderilme Tarihi 29 Nisan 2025
Kabul Tarihi 28 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 1

Kaynak Göster

APA Ata, B., & Çetin, A. (2025). Self-Efficacy Levels of Pre-Service Science Teachers Regarding STEM Practices. Journal of Individual Differences in Education, 7(1), 44-53. https://doi.org/10.47156/jide.1686795