Research Article
BibTex RIS Cite
Year 2023, Volume: 18 Issue: 1, 1 - 9, 30.03.2023

Abstract

Project Number

N/A

References

  • Ángeles de la R, Rodríguez M, León VM., Prats D, (2008) Removal of natural organic matter and THM formation potential by ultra- and nanofiltration of surface water. Water Res. 42, 714–722. https://doi.org/10.1016/j.watres.2007.07.049
  • Beita-Sandí, W, Ersan, MS., Uzun, H, Karanfil, T, 2016. Removal of N-nitrosodimethylamine precursors with powdered activated carbon adsorption. Water Res. 88. https://doi.org/10.1016/j.watres.2015.10.062
  • Boyer TH, Singer PC, (2005) Bench-scale testing of a magnetic ion exchange resin for removal of disinfection by-product precursors. Water Res. 39, 1265–1276. doi:10.1016/j.watres.2005.01.002
  • Chellam S, (2000) Effects of nanofiltration on trihalomethane and haloacetic acid precursors removal and speciation in waters containing low concentrations of bromide ion. Environ. Sci. Technol. 34, 1813–1820. doi:10.1021/es991153t
  • Chen Z, Valentine RL, (2006) Modeling the Formation of N -Nitrosodimethylamine (NDMA) from the Reaction of Natural Organic Matter (NOM) with Monochloramine. Environ. Sci. Technol. 40, 7290–7297. doi:10.1021/es0605319
  • Ersan MS, Ladner DA, Karanfil T, (2016) The control of N-nitrosodimethylamine, Halonitromethane, and Trihalomethane precursors by Nanofiltration. Water Res. 105, 274–281. doi:10.1016/j.watres.2016.08.065
  • Ersan MS, Ladner, DA, Karanfil T, (2015) N-nitrosodimethylamine (NDMA) precursors leach from nanofiltration membranes. Environ. Sci. Technol. Lett. 2. doi:10.1021/acs.estlett.5b00015
  • Gan, X, Karanfil T, Kaplan Bekaroglu SS, Shan J, (2013) The control of N-DBP and C-DBP precursors with MIEX®. Water Res. 47, 1344–1352. doi:10.1016/j.watres.2012.11.049
  • Golea D, Sutherland, S, Jarvis, P, Judd, S.J, 2016. Pilot-scale spiral wound membrane assessment for THM precursor rejection from upland waters. Sep. Sci. Technol. 51, 1380–1388. doi:10.1080/01496395.2016.1162807
  • Krasner SW, Weinberg HS, Richardson SD, Pastor SJ, Chinn R, Sclimenti MJ, Onstad GD, Thruston AD, (2006) Occurrence of a new generation of disinfection byproducts. Environ. Sci. Technol. 40, 7175–7185. doi:10.1021/es060353j
  • Krauss M, Longrée P, Van Houtte E, Cauwenberghs J, Hollender J, (2010) Assessing the fate of nitrosamine precursors in wastewater treatment by physicochemical fractionation. Environ. Sci. Technol. 44, 7871–7877. doi:10.1021/es101289z
  • Lin YL, Chiang PC, Chang EE, (2006) Reduction of disinfection by-products precursors by nanofiltration process. J. Hazard. Mater. 137, 324–331. doi:10.1016/j.jhazmat.2006.02.016
  • Mitch Sedlak DL, (2004) Characterization and Fate of N -Nitrosodimethylamine Precursors in Municipal Wastewater Treatment Plants. Environ. Sci. Technol. 38, 1445–1454. doi:10.1021/es035025n
  • Miyashita Y, Park S-H., Hyung H, Huang C-H., Kim J-H, (2009) Removal of -Nitrosamines and Their Precursors by Nanofiltration and Reverse Osmosis Membranes. J. Environ. Eng. 135, 788–795. doi:10.1061/(ASCE)EE.1943-7870.0000043
  • Morran, J, Whittle, M, Fabris, R.B, Harris, M, Leach, J.S, Newcombe, G, Drikas, M, 2011. Nitrosamines from pipeline materials in drinking water distribution systems. J. Am. Water Works Assoc. 103, 76–83. doi:10.1002/j.1551-8833.2011.tb11549.x
  • Plewa Wagner ED, Jazwierska P, Richardson SD, Chen PH, McKague AB, (2004) Halonitromethane drinking water disinfection byproducts: chemical characterization and mammalian cell cytotoxicity and genotoxicity. Environ. Sci. Technol. 38, 62–68. doi: 10.1021/Es030477l
  • Russell CG., Blute, NK, Via S, Wu X, Chowdhury Z, (2012) Nationwide assessment of nitrosamine occurrence and trends. J. Am. Water Works Assoc. 104, 57–58. doi:10.5942/jawwa.2012.104.0037
  • Schmidt CK, Brauch, H-J, (2008) N,N -Dimethylsulfamide as Precursor for N -Nitrosodimethylamine (NDMA) Formation upon Ozonation and its Fate During Drinking Water Treatment. Environ. Sci. Technol. 42, 6340–6346. doi:10.1021/es7030467
  • Schreiber, IM, Mitch, WA, 2007. Enhanced nitrogenous disinfection byproduct formation near the breakpoint: Implications for nitrification control. Environ. Sci. Technol. 41, 7039–7046. doi:10.1021/es070500t
  • Snyder SA, Wert, EC., Lei H D, Westerhoff P, Yoon Y, (2007) Removal of EDCs and pharmaceuticals in drinking and reuse treatment processes. Am. Water Work. Assoc. Res. Found. Rep. 331. http://s3-us-west-2.amazonaws.com/ucldc-nuxeo-ref-media/2b8a1c5f-75dd-419f-be65-517b5263defa
  • Teefy S, Chan, CC, Wong W, Work L, (2011) NDMA formation from gaskets used in water storage tanks. J. Am. Water Works Assoc. 106, E408–E417. doi:10.5942/jawwa.2014.106.0081
  • U.S. EPA, 2006. Evaluation Guidance Manual for the Final Stage 2 Disinfectants and Disinfection Byproducts Rule. Environ. Prot. Agency Off. Water 1–434. https://www.epa.gov/dwreginfo/stage-1-and-stage-2-disinfectants-and-disinfection-byproducts-rules
  • Uyak V, Yavuz S, Toroz I, Ozaydin S, Genceli EA, (2007) Disinfection by-products precursors removal by enhanced coagulation and PAC adsorption. Desalination 216, 334–344. doi:10.1016/j.desal.2006.11.026

The Removal of N-nitrosodimethylamine, Trihalomethane, and Halonitromethane Precursors by RO Membrane from Water Sources

Year 2023, Volume: 18 Issue: 1, 1 - 9, 30.03.2023

Abstract

Reverse osmosis (RO) has been proven to be effective for removing precursors of disinfection by-products (DBPs) from different water sources in conventional water treatment processes. However, polymeric membranes have the potential to leach DBP precursors, which can introduce a bias in true performance evaluation of these membranes in bench, pilot, and full-scale operations. Therefore, this study first examined the NDMA precursor leaching potential of one of the commercially available virgin reverse osmosis (RO) membranes. Following a cleaning procedure, the efficiency of the RO membrane was tested for the rejection of N-nitrosodimethylamine (NDMA), trihalomethane (THM), and halonitromethane (HNM) precursors from surface water and wastewater treatment plant effluents. The results indicated that the leaching potentials of RO membranes for NDMA precursors were up to 370 ng/L, while the membrane's leaching potential decreased as the filtered volume of water increased. In the tested water samples, the RO rejection efficiencies ranged from 78 to 91%, 81 to 97%, and 63 to 78% for NDMA, THM, and HNM precursors, respectively. The results also showed that the background water quality did not have a considerable influence on the rejection of NDMA, HNMs, and THM precursors by the RO membrane. While the correlation between NDMAFP, HNMFP and THMFP, and TDN removals were weak (r2 ranged from 0.02 to 0.3), the removals of DBPFP were correlated well with DOC removals (r2 ranged from 0.6 to 0.89).

Supporting Institution

N/A

Project Number

N/A

Thanks

N/A

References

  • Ángeles de la R, Rodríguez M, León VM., Prats D, (2008) Removal of natural organic matter and THM formation potential by ultra- and nanofiltration of surface water. Water Res. 42, 714–722. https://doi.org/10.1016/j.watres.2007.07.049
  • Beita-Sandí, W, Ersan, MS., Uzun, H, Karanfil, T, 2016. Removal of N-nitrosodimethylamine precursors with powdered activated carbon adsorption. Water Res. 88. https://doi.org/10.1016/j.watres.2015.10.062
  • Boyer TH, Singer PC, (2005) Bench-scale testing of a magnetic ion exchange resin for removal of disinfection by-product precursors. Water Res. 39, 1265–1276. doi:10.1016/j.watres.2005.01.002
  • Chellam S, (2000) Effects of nanofiltration on trihalomethane and haloacetic acid precursors removal and speciation in waters containing low concentrations of bromide ion. Environ. Sci. Technol. 34, 1813–1820. doi:10.1021/es991153t
  • Chen Z, Valentine RL, (2006) Modeling the Formation of N -Nitrosodimethylamine (NDMA) from the Reaction of Natural Organic Matter (NOM) with Monochloramine. Environ. Sci. Technol. 40, 7290–7297. doi:10.1021/es0605319
  • Ersan MS, Ladner DA, Karanfil T, (2016) The control of N-nitrosodimethylamine, Halonitromethane, and Trihalomethane precursors by Nanofiltration. Water Res. 105, 274–281. doi:10.1016/j.watres.2016.08.065
  • Ersan MS, Ladner, DA, Karanfil T, (2015) N-nitrosodimethylamine (NDMA) precursors leach from nanofiltration membranes. Environ. Sci. Technol. Lett. 2. doi:10.1021/acs.estlett.5b00015
  • Gan, X, Karanfil T, Kaplan Bekaroglu SS, Shan J, (2013) The control of N-DBP and C-DBP precursors with MIEX®. Water Res. 47, 1344–1352. doi:10.1016/j.watres.2012.11.049
  • Golea D, Sutherland, S, Jarvis, P, Judd, S.J, 2016. Pilot-scale spiral wound membrane assessment for THM precursor rejection from upland waters. Sep. Sci. Technol. 51, 1380–1388. doi:10.1080/01496395.2016.1162807
  • Krasner SW, Weinberg HS, Richardson SD, Pastor SJ, Chinn R, Sclimenti MJ, Onstad GD, Thruston AD, (2006) Occurrence of a new generation of disinfection byproducts. Environ. Sci. Technol. 40, 7175–7185. doi:10.1021/es060353j
  • Krauss M, Longrée P, Van Houtte E, Cauwenberghs J, Hollender J, (2010) Assessing the fate of nitrosamine precursors in wastewater treatment by physicochemical fractionation. Environ. Sci. Technol. 44, 7871–7877. doi:10.1021/es101289z
  • Lin YL, Chiang PC, Chang EE, (2006) Reduction of disinfection by-products precursors by nanofiltration process. J. Hazard. Mater. 137, 324–331. doi:10.1016/j.jhazmat.2006.02.016
  • Mitch Sedlak DL, (2004) Characterization and Fate of N -Nitrosodimethylamine Precursors in Municipal Wastewater Treatment Plants. Environ. Sci. Technol. 38, 1445–1454. doi:10.1021/es035025n
  • Miyashita Y, Park S-H., Hyung H, Huang C-H., Kim J-H, (2009) Removal of -Nitrosamines and Their Precursors by Nanofiltration and Reverse Osmosis Membranes. J. Environ. Eng. 135, 788–795. doi:10.1061/(ASCE)EE.1943-7870.0000043
  • Morran, J, Whittle, M, Fabris, R.B, Harris, M, Leach, J.S, Newcombe, G, Drikas, M, 2011. Nitrosamines from pipeline materials in drinking water distribution systems. J. Am. Water Works Assoc. 103, 76–83. doi:10.1002/j.1551-8833.2011.tb11549.x
  • Plewa Wagner ED, Jazwierska P, Richardson SD, Chen PH, McKague AB, (2004) Halonitromethane drinking water disinfection byproducts: chemical characterization and mammalian cell cytotoxicity and genotoxicity. Environ. Sci. Technol. 38, 62–68. doi: 10.1021/Es030477l
  • Russell CG., Blute, NK, Via S, Wu X, Chowdhury Z, (2012) Nationwide assessment of nitrosamine occurrence and trends. J. Am. Water Works Assoc. 104, 57–58. doi:10.5942/jawwa.2012.104.0037
  • Schmidt CK, Brauch, H-J, (2008) N,N -Dimethylsulfamide as Precursor for N -Nitrosodimethylamine (NDMA) Formation upon Ozonation and its Fate During Drinking Water Treatment. Environ. Sci. Technol. 42, 6340–6346. doi:10.1021/es7030467
  • Schreiber, IM, Mitch, WA, 2007. Enhanced nitrogenous disinfection byproduct formation near the breakpoint: Implications for nitrification control. Environ. Sci. Technol. 41, 7039–7046. doi:10.1021/es070500t
  • Snyder SA, Wert, EC., Lei H D, Westerhoff P, Yoon Y, (2007) Removal of EDCs and pharmaceuticals in drinking and reuse treatment processes. Am. Water Work. Assoc. Res. Found. Rep. 331. http://s3-us-west-2.amazonaws.com/ucldc-nuxeo-ref-media/2b8a1c5f-75dd-419f-be65-517b5263defa
  • Teefy S, Chan, CC, Wong W, Work L, (2011) NDMA formation from gaskets used in water storage tanks. J. Am. Water Works Assoc. 106, E408–E417. doi:10.5942/jawwa.2014.106.0081
  • U.S. EPA, 2006. Evaluation Guidance Manual for the Final Stage 2 Disinfectants and Disinfection Byproducts Rule. Environ. Prot. Agency Off. Water 1–434. https://www.epa.gov/dwreginfo/stage-1-and-stage-2-disinfectants-and-disinfection-byproducts-rules
  • Uyak V, Yavuz S, Toroz I, Ozaydin S, Genceli EA, (2007) Disinfection by-products precursors removal by enhanced coagulation and PAC adsorption. Desalination 216, 334–344. doi:10.1016/j.desal.2006.11.026
There are 23 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Articles
Authors

Mahmut Ersan 0000-0003-0495-0903

Gamze Ersan 0000-0002-8785-1304

Project Number N/A
Publication Date March 30, 2023
Acceptance Date March 16, 2023
Published in Issue Year 2023 Volume: 18 Issue: 1

Cite

APA Ersan, M., & Ersan, G. (2023). The Removal of N-nitrosodimethylamine, Trihalomethane, and Halonitromethane Precursors by RO Membrane from Water Sources. Journal of International Environmental Application and Science, 18(1), 1-9.
AMA Ersan M, Ersan G. The Removal of N-nitrosodimethylamine, Trihalomethane, and Halonitromethane Precursors by RO Membrane from Water Sources. J. Int. Environmental Application & Science. March 2023;18(1):1-9.
Chicago Ersan, Mahmut, and Gamze Ersan. “The Removal of N-Nitrosodimethylamine, Trihalomethane, and Halonitromethane Precursors by RO Membrane from Water Sources”. Journal of International Environmental Application and Science 18, no. 1 (March 2023): 1-9.
EndNote Ersan M, Ersan G (March 1, 2023) The Removal of N-nitrosodimethylamine, Trihalomethane, and Halonitromethane Precursors by RO Membrane from Water Sources. Journal of International Environmental Application and Science 18 1 1–9.
IEEE M. Ersan and G. Ersan, “The Removal of N-nitrosodimethylamine, Trihalomethane, and Halonitromethane Precursors by RO Membrane from Water Sources”, J. Int. Environmental Application & Science, vol. 18, no. 1, pp. 1–9, 2023.
ISNAD Ersan, Mahmut - Ersan, Gamze. “The Removal of N-Nitrosodimethylamine, Trihalomethane, and Halonitromethane Precursors by RO Membrane from Water Sources”. Journal of International Environmental Application and Science 18/1 (March 2023), 1-9.
JAMA Ersan M, Ersan G. The Removal of N-nitrosodimethylamine, Trihalomethane, and Halonitromethane Precursors by RO Membrane from Water Sources. J. Int. Environmental Application & Science. 2023;18:1–9.
MLA Ersan, Mahmut and Gamze Ersan. “The Removal of N-Nitrosodimethylamine, Trihalomethane, and Halonitromethane Precursors by RO Membrane from Water Sources”. Journal of International Environmental Application and Science, vol. 18, no. 1, 2023, pp. 1-9.
Vancouver Ersan M, Ersan G. The Removal of N-nitrosodimethylamine, Trihalomethane, and Halonitromethane Precursors by RO Membrane from Water Sources. J. Int. Environmental Application & Science. 2023;18(1):1-9.

“Journal of International Environmental Application and Science”