Additive manufacturing methods, which have begun to be used in final product production beyond producing prototypes, are popular research topics today. The Fused Filament Fabrication (FFF) method, which has a wider usage area and user base, is the most well-known among these methods. The method in which the polymer is extruded in layers has advantages such as design freedom and topology optimization, as well as disadvantages such as surface roughness and low production speed. The number of materials that can be used in the FFF method is diversifying day by day, and polymeric composites can also be produced beyond pure polymers. The use of engineering polymers such as polyamide in this production method creates many new opportunities. In addition, the start of production of short fiber reinforced polymeric composites has paved the way to produce high-performance final products. In this study, the effects of parameters such as layer thickness and printing orientation on the surface roughness of samples produced using polyamide and short carbon fiber reinforced polymer matrix composite materials were examined. Chemical surface treatment was applied to the surfaces of 3D-printed samples to improve surface roughness. It was concluded that the increase in layer thickness increases the surface roughness, the -/+45 filling orientation creates higher roughness than the 0 and 90 orientations, and the surface quality can be increased by chemical surface modification.
Ryan J, Dizon C, Espera AH, Chen Q (2018) Advincula RC. Mechanical characterization of 3D-printed polymers. Addit Manuf 20:44–67. https://doi.org/10.1016/j.addma.2017.12.002
Turner BN, Strong R, Gold SA (2014) A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp J 20:192–204. https://doi.org/10.1108/RPJ-01-2013-0012
Ning F, Cong W, Hu Y, Wang H (2017) Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties. J Compos Mater 51:451–62. https://doi.org/10.1177/0021998316646169
Yasa E (2019) Anisotropic Impact Toughnness of Chopped Carbon Fiber Reinforced Nylon Fabricated By Material-Extrusion-Based Additive Manufacturing. Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering 20:195–203. https://doi.org/10.18038/aubtda.498606
Doğru A, Yilancioglu S, Ulku G, Turan BŞ, Seydibeyoglu MÖ (2022) Comparison of wood fiber reinforced PLA matrix bio-composites produced by Injection Molding and Fused Filament Fabrication (FFF) methods. Hacettepe Journal of Biology and Chemistry 50:215–26. https://doi.org/10.15671/HJBC.1053764
Mazzanti V, Malagutti L, Mollica F (2019) FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties. Polymers 11:1094. https://doi.org/10.3390/polym11071094
Gibson I, Rosen D, Stucker B (2015) Additive Manufacturing Technologies 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. New York
Boparai KS, Singh R, Singh H (2016) Development of rapid tooling using fused deposition modeling: A review. Rapid Prototyp J 22:281–99. https://doi.org/10.1108/RPJ-04-2014-0048/FULL/PDF
Kamer MS, Temiz Ş, Yaykaşli H, Kaya A, Akay OE (2022) 3B yazıcıda farklı yazdırma hızlarında ABS ve PLA malzeme ile üretilen çekme test numunelerinin mekanik özelliklerinin karşılaştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37:1197–212. https://doi.org/10.17341/GAZIMMFD.961981
Nguyen TK, Lee BK (2018) Post-processing of FDM parts to improve surface and thermal properties. Rapid Prototyp J 24:1091–100. https://doi.org/10.1108/RPJ-12-2016-0207/FULL/PDF
Jo KH, Jeong YS, Lee JH, Lee SH (2016) A study of post-processing methods for improving the tightness of a part fabricated by fused deposition modeling. International Journal of Precision Engineering and Manufacturing 17:1541–1546. https://doi.org/10.1007/S12541-016-0180-Z
Pestano V, Pohlmann M, Silva FP da, Pestano V, Pohlmann M, Silva FP 82022) Effect of Acetone Vapor Smoothing Process on Surface Finish and Geometric Accuracy of Fused Deposition Modeling ABS Parts. Journal of Materials Science and Chemical Engineering 10:1–9. https://doi.org/10.4236/MSCE.2022.1010001
John Rajan A, Sugavaneswaran M, Prashanthi B, Deshmukh S, Jose S (2020) Influence of Vapour Smoothing Process Parameters on Fused Deposition Modelling Parts Surface Roughness at Different Build Orientation. Mater Today Proc 22:2772–2788. https://doi.org/10.1016/J.MATPR.2020.03.408
Boschetto A, Bottini L, Veniali F (2016) Finishing of Fused Deposition Modeling parts by CNC machining. Robot Comput Integr Manuf 41:92–101. https://doi.org/10.1016/J.RCIM.2016.03.004
Moradi M, Moghadam MK, Shamsborhan M, Bodaghi M, Falavandi H (2020) Post-Processing of FDM 3D-Printed Polylactic Acid Parts by Laser Beam Cutting. Polymers 12:550-568. https://doi.org/10.3390/POLYM12030550
Caran R, Nur A, Yılmaz Y, Ercan N, Yunus DE, Çelik Bedeloğlu A (2024) The flexural and compressive properties of sandwich composites with different 3D-printed core structures. J Innovative Eng Nat Sci 4:98–112. https://doi.org/10.61112/jiens.1355323
Ali MA, Kaneko T (2015) Polyamide Syntheses. Encyclopedia of Polymeric Nanomaterials 15:1750–62. https://doi.org/10.1007/978-3-642-29648-2_418
Kricheldorf H. Wallace H (2013) Carothers: Life and Work. Polycondensation 13:27–34. https://doi.org/10.1007/978-3-642-39429-4_3
AC 4102 CHOPPED FIBER Technical Data Sheet - DowAksa – Knowde (accessed December 12, 2023). https://www.knowde.com/stores/dowaksa/documents/242700
Benkaddour A, Demir EC, Jankovic N, Kim C, McDermott M, Ayranci C (2022) A hydrophobic coating on cellulose nanocrystals improves the mechanical properties of polyamide-6 nanocomposites, Journal of Composite Materials, 56:11. https://doi.org/10.1177/00219983221075
UltiMaker S5: Expand your 3D printing ambitions (accessed December 13, 2023). https://ultimaker.com/3d-printers/s-series/ultimaker-s5/
Introducing the new Ultimaker print core CC - UltiMaker (accessed December 13, 2023). https://ultimaker.com/learn/introducing-the-new-ultimaker-print-core-cc/
Corrêa AC, de Morais Teixeira E, Carmona VB, Teodoro KBR, Ribeiro C, Mattoso LHC, et al (2014) Obtaining nanocomposites of polyamide 6 and cellulose whiskers via extrusion and injection molding. Cellulose 21:311–22. https://doi.org/10.1007/S10570-013-0132-Z/TABLES/3
Benkaddour A, Rusin C, Demir EC, Ayranci C, McDermott M (2023) Cationic surface functionalization of cellulose nanocrystals and its effect on the mechanical properties of polyamide 6 thin films, Cellulose 30:7653–7665. https://doi.org/10.1007/S10570-023-05313-6/TABLES/2
Wang Y, Hou DF, Ke K, Huang YH, Yan Y, Yang W, et al (2021) Chemical-resistant polyamide 6/polyketone composites with gradient encapsulation structure: An insight into the formation mechanism. Polymer 212:123173. https://doi.org/10.1016/J.POLYMER.2020.123173
Lehmann G, Neunhoefer O, Roselius W, Vitzthum O (1971) Treatment of polyamide granules with formic acid, US Patent
Selvam A, Mayilswamy S, Whenish R, Naresh K, Shanmugam V, Das O (2022) Multi-objective optimization and prediction of surface roughness and printing time in FFF printed ABS polymer. Scientific Reports 2022 12:1–12. https://doi.org/10.1038/s41598-022-20782-8
Mittal K (2015) Advances in Contact Angle, Wettability and Adhesion, Wiley Blackwell. https://doi.org/10.1002/9781119117018
Gao Z (2011) Modification of surface properties of polyamide 6 films with atmospheric pressure plasma. Appl Surf Sci 257:6068–72. https://doi.org/10.1016/J.APSUSC.2011.01.132
Erimiş Filament Üretim Yöntemi ile Üretilen Kompozit Yapılarda Yöne Bağlı Yüzey Özelliklerinin İncelenmesi ve İyileştirilmesi
Prototip üretmenin ötesinde nihai ürün üretiminde de kullanılmaya başlanan eklemeli imalat yöntemleri günümüzde popüler araştırma konularıdır. Kullanım alanı ve kullanıcı kitlesi daha geniş olan Erimiş Filament İmalatı (FFF) yöntemi bu yöntemler arasında en bilinenidir. Polimerin katmanlar halinde ekstrüde edildiği yöntemin tasarım özgürlüğü ve topoloji optimizasyonu gibi avantajlarının yanı sıra yüzey pürüzlülüğü ve düşük üretim hızı gibi dezavantajları da vardır. FFF yönteminde kullanılabilecek malzeme sayısı gün geçtikçe çeşitlenmekte ve saf polimerlerin ötesinde polimerik kompozitler de üretilebilmektedir. Bu üretim yönteminde poliamid gibi mühendislik polimerlerinin kullanılması birçok yeni fırsat yaratmaktadır. Ayrıca kısa elyaf takviyeli polimerik kompozitlerin üretimine başlanması, yüksek performanslı nihai ürünlerin üretilmesinin önünü açmıştır. Bu çalışmada poliamid ve kısa karbon fiber takviyeli polimer matrisli kompozit malzemeler kullanılarak üretilen numunelerin yüzey pürüzlülüğüne katman kalınlığı ve baskı yönü gibi parametrelerin etkisi incelenmiştir. Yüzey pürüzlülüğünü iyileştirmek için 3D baskılı numunelerin yüzeylerine kimyasal yüzey işlemi uygulandı. Tabaka kalınlığının artmasının yüzey pürüzlülüğünü arttırdığı, -/+45 dolgu oryantasyonunun 0 ve 90 oryantasyonlarına göre daha yüksek pürüzlülük oluşturduğu, kimyasal yüzey modifikasyonu ile yüzey kalitesinin arttırılabileceği sonucuna varılmıştır.
Ryan J, Dizon C, Espera AH, Chen Q (2018) Advincula RC. Mechanical characterization of 3D-printed polymers. Addit Manuf 20:44–67. https://doi.org/10.1016/j.addma.2017.12.002
Turner BN, Strong R, Gold SA (2014) A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp J 20:192–204. https://doi.org/10.1108/RPJ-01-2013-0012
Ning F, Cong W, Hu Y, Wang H (2017) Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties. J Compos Mater 51:451–62. https://doi.org/10.1177/0021998316646169
Yasa E (2019) Anisotropic Impact Toughnness of Chopped Carbon Fiber Reinforced Nylon Fabricated By Material-Extrusion-Based Additive Manufacturing. Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering 20:195–203. https://doi.org/10.18038/aubtda.498606
Doğru A, Yilancioglu S, Ulku G, Turan BŞ, Seydibeyoglu MÖ (2022) Comparison of wood fiber reinforced PLA matrix bio-composites produced by Injection Molding and Fused Filament Fabrication (FFF) methods. Hacettepe Journal of Biology and Chemistry 50:215–26. https://doi.org/10.15671/HJBC.1053764
Mazzanti V, Malagutti L, Mollica F (2019) FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties. Polymers 11:1094. https://doi.org/10.3390/polym11071094
Gibson I, Rosen D, Stucker B (2015) Additive Manufacturing Technologies 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. New York
Boparai KS, Singh R, Singh H (2016) Development of rapid tooling using fused deposition modeling: A review. Rapid Prototyp J 22:281–99. https://doi.org/10.1108/RPJ-04-2014-0048/FULL/PDF
Kamer MS, Temiz Ş, Yaykaşli H, Kaya A, Akay OE (2022) 3B yazıcıda farklı yazdırma hızlarında ABS ve PLA malzeme ile üretilen çekme test numunelerinin mekanik özelliklerinin karşılaştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37:1197–212. https://doi.org/10.17341/GAZIMMFD.961981
Nguyen TK, Lee BK (2018) Post-processing of FDM parts to improve surface and thermal properties. Rapid Prototyp J 24:1091–100. https://doi.org/10.1108/RPJ-12-2016-0207/FULL/PDF
Jo KH, Jeong YS, Lee JH, Lee SH (2016) A study of post-processing methods for improving the tightness of a part fabricated by fused deposition modeling. International Journal of Precision Engineering and Manufacturing 17:1541–1546. https://doi.org/10.1007/S12541-016-0180-Z
Pestano V, Pohlmann M, Silva FP da, Pestano V, Pohlmann M, Silva FP 82022) Effect of Acetone Vapor Smoothing Process on Surface Finish and Geometric Accuracy of Fused Deposition Modeling ABS Parts. Journal of Materials Science and Chemical Engineering 10:1–9. https://doi.org/10.4236/MSCE.2022.1010001
John Rajan A, Sugavaneswaran M, Prashanthi B, Deshmukh S, Jose S (2020) Influence of Vapour Smoothing Process Parameters on Fused Deposition Modelling Parts Surface Roughness at Different Build Orientation. Mater Today Proc 22:2772–2788. https://doi.org/10.1016/J.MATPR.2020.03.408
Boschetto A, Bottini L, Veniali F (2016) Finishing of Fused Deposition Modeling parts by CNC machining. Robot Comput Integr Manuf 41:92–101. https://doi.org/10.1016/J.RCIM.2016.03.004
Moradi M, Moghadam MK, Shamsborhan M, Bodaghi M, Falavandi H (2020) Post-Processing of FDM 3D-Printed Polylactic Acid Parts by Laser Beam Cutting. Polymers 12:550-568. https://doi.org/10.3390/POLYM12030550
Caran R, Nur A, Yılmaz Y, Ercan N, Yunus DE, Çelik Bedeloğlu A (2024) The flexural and compressive properties of sandwich composites with different 3D-printed core structures. J Innovative Eng Nat Sci 4:98–112. https://doi.org/10.61112/jiens.1355323
Ali MA, Kaneko T (2015) Polyamide Syntheses. Encyclopedia of Polymeric Nanomaterials 15:1750–62. https://doi.org/10.1007/978-3-642-29648-2_418
Kricheldorf H. Wallace H (2013) Carothers: Life and Work. Polycondensation 13:27–34. https://doi.org/10.1007/978-3-642-39429-4_3
AC 4102 CHOPPED FIBER Technical Data Sheet - DowAksa – Knowde (accessed December 12, 2023). https://www.knowde.com/stores/dowaksa/documents/242700
Benkaddour A, Demir EC, Jankovic N, Kim C, McDermott M, Ayranci C (2022) A hydrophobic coating on cellulose nanocrystals improves the mechanical properties of polyamide-6 nanocomposites, Journal of Composite Materials, 56:11. https://doi.org/10.1177/00219983221075
UltiMaker S5: Expand your 3D printing ambitions (accessed December 13, 2023). https://ultimaker.com/3d-printers/s-series/ultimaker-s5/
Introducing the new Ultimaker print core CC - UltiMaker (accessed December 13, 2023). https://ultimaker.com/learn/introducing-the-new-ultimaker-print-core-cc/
Corrêa AC, de Morais Teixeira E, Carmona VB, Teodoro KBR, Ribeiro C, Mattoso LHC, et al (2014) Obtaining nanocomposites of polyamide 6 and cellulose whiskers via extrusion and injection molding. Cellulose 21:311–22. https://doi.org/10.1007/S10570-013-0132-Z/TABLES/3
Benkaddour A, Rusin C, Demir EC, Ayranci C, McDermott M (2023) Cationic surface functionalization of cellulose nanocrystals and its effect on the mechanical properties of polyamide 6 thin films, Cellulose 30:7653–7665. https://doi.org/10.1007/S10570-023-05313-6/TABLES/2
Wang Y, Hou DF, Ke K, Huang YH, Yan Y, Yang W, et al (2021) Chemical-resistant polyamide 6/polyketone composites with gradient encapsulation structure: An insight into the formation mechanism. Polymer 212:123173. https://doi.org/10.1016/J.POLYMER.2020.123173
Lehmann G, Neunhoefer O, Roselius W, Vitzthum O (1971) Treatment of polyamide granules with formic acid, US Patent
Selvam A, Mayilswamy S, Whenish R, Naresh K, Shanmugam V, Das O (2022) Multi-objective optimization and prediction of surface roughness and printing time in FFF printed ABS polymer. Scientific Reports 2022 12:1–12. https://doi.org/10.1038/s41598-022-20782-8
Mittal K (2015) Advances in Contact Angle, Wettability and Adhesion, Wiley Blackwell. https://doi.org/10.1002/9781119117018
Gao Z (2011) Modification of surface properties of polyamide 6 films with atmospheric pressure plasma. Appl Surf Sci 257:6068–72. https://doi.org/10.1016/J.APSUSC.2011.01.132
Toplam 30 adet kaynakça vardır.
Ayrıntılar
Birincil Dil
İngilizce
Konular
Kompozit ve Hibrit Malzemeler, Malzeme Üretim Teknolojileri, Polimerler ve Plastikler
Mehmet Özgür Seydibeyoğlu
IZMIR KATIP CELEBI UNIVERSITY, FACULTY OF ENGINEERING-ARCHITECTURE, DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING, DEPARTMENT OF MATERIALS0000-0002-2584-7043Türkiye
Doğru, Ö., Doğru, A., & Seydibeyoğlu, M. Ö. (2024). Examination and Improvement of Direction-Dependent Surface Properties in Composite Structures Produced by the Fused Depostion Modelling Method. Journal of Innovative Engineering and Natural Science, 4(1), 232-244. https://doi.org/10.61112/jiens.1390452