Research Article
BibTex RIS Cite

Sonlu Elemanlar Yöntemi Kullanılarak Karbon/Cam Elyaf Kompozitinden Yapılmış Kolon İskeletinin Modal Analizi

Year 2025, Volume: 5 Issue: 2, 652 - 662, 31.07.2025
https://doi.org/10.61112/jiens.1616436

Abstract

Kompozit malzemeler fiber ve matris malzemesinin sağladığı yüksek dayanım ve hafiflikten dolayı otomotiv, savunma, denizcilik, havacılık gibi sektörlerde kullanılmaktadır. Bu sektörlerin yanında, kompozitler inşaat sektöründe de binaların mukavemetini artırmada kaplama malzemesi olarak sıkça tercih edilmektedir. Bu çalışmada ise, boyuna donatıda çelik yerine Epoxy Carbon Woven Prepreg ve Epoxy S-Glass UD kompozitlerin binanın yapısını oluşturan iskelette kullanılmasının titreşim sonuçlarına etkisi incelenmiştir. Bu amaçla boyuna donatı ve etriye tasarımı yapılarak oluşturulan kolon iskeletinin titreşim analizi sayısal olarak gerçekleştirilmiştir. Boyuna donatıda karbon ve cam fiber takviyeli kompozit kullanılmasının titreşim sonuçlarına etkisi incelendiğinden, matris malzemesi olarak beton modellemesi analize dahil edilmemiştir. Çelik yerine cam fiber kompozit kullanılmasının elde edilen ortalama titreşim değerlerinde düşüşe neden olurken, karbon fiber kompozit kullanılması artışa sebebiyet vermiştir. Karbon ve cam fiber kullanılması deformasyonda ise artışa neden olmuştur.

References

  • Erbaş Y, Baran M, Mercimek Ö, Anıl O (2022) Karbon fiber takviyeli elyaf kumaşlarla güçlendirilen betonarme kolonların eş merkezli ve tek doğrultulu eğilme yüklemeleri altındaki davranışının deneysel olarak incelenmesi. Bayburt Univ Fen Bilim Derg 5(1):91–103. https://doi.org/10.55117/BUFBD.1118830
  • Ergene B (2021) Çatlak derinliğinin ve fiber açısının karbon fiber takviyeli polimer kompozit kirişin titreşim davranışına etkisinin sonlu elemanlar analizi yöntemi ile belirlenmesi. Int J 3D Print Technol Digit Ind 5(2):120–129. https://doi.org/10.46519/IJ3DPTDI.931530
  • Lyapin A, Shatilov Y (2016) Vibration-based damage detection of the reinforced concrete column. Procedia Eng 150:1867–1871. https://doi.org/10.1016/j.proeng.2016.07.184
  • Özdemir MT, Kobya V, Yaylı MÖ, Mardani-Aghabaglou A (2021) Vibration analysis of steel fiber reinforced self-compacting concrete beam on elastic foundation. Comput Concr 27(2):85–97. https://doi.org/10.12989/CAC.2021.27.2.085
  • Ramkumar K, Kang H (2013) Finite element based investigation of buckling and vibration behaviour of thin walled box beams. Appl Comput Mech 7(2):155-182.
  • Pachaiappan S (2024) Free vibration analysis of FGM beam by numerical analysis. Innov Infrastruct Solut 9(8). https://doi.org/10.1007/s41062-024-01647-7
  • Kim HJ, Cho J (2024) Numerical free vibration analysis of sandwich beams with a steel-ceramic FGM core and FG-CNTRC facesheets. Int J Steel Struct 24(4):734–742. https://doi.org/10.1007/s13296-024-00858-z
  • Belarbi M, Khechai A, Houari MSA, Bessaim A, Hirane H, Garg A (2024) Free vibration behavior of sandwich FGM beams: Parametric and uncertainty analysis. J Vib Eng Technol. https://doi.org/10.1007/s42417-024-01452-7
  • Khiem NT, Huan DT, Hieu TT (2022) Vibration of cracked FGM beam with piezoelectric layer under moving load. J Vib Eng Technol 11(2):755–769. https://doi.org/10.1007/s42417-022-00607-8
  • Wang R, Zhong R, Wang Q (2024) A SGM-IHB approach for nonlinear free and forced vibration analysis of FG-GPLRC beams rested on viscoelastic foundation. Nonlinear Dyn. https://doi.org/10.1007/s11071-024-10506-0
  • Ghazwani MH, Alnujaie A, Youzera H, Meftah SA, Tounsi A (2024) Nonlinear forced vibration investigation of the sandwich porous FGM beams with viscoelastic core layer. Acta Mech 235(5):2889–2904. https://doi.org/10.1007/s00707-024-03865-7
  • Jiang J, Chen W (2024) Dynamic behaviors of general composite beams using mixed finite elements. Int J Mech Sci 281:109687. https://doi.org/10.1016/j.ijmecsci.2024.109687
  • Yan Y, Liu B, Xing Y, Carrera E, Pagani A (2021) Free vibration analysis of variable stiffness composite laminated beams and plates by novel hierarchical differential quadrature finite elements. Compos Struct 274:114364. https://doi.org/10.1016/j.compstruct.2021.114364
  • Liu X, Pagani A, Carrera E, Liu X (2024) Free vibration analysis of composite beams and laminated reinforced panels by refined dynamic stiffness method and CUF-based component-wise theory. Compos Struct 337:118058. https://doi.org/10.1016/j.compstruct.2024.118058
  • Davar A, Azarafza R (2023) Free vibration analysis of functionally graded annular circular plates using classical thin plate theory based on physical neutral surface. J Vib Eng Technol 12(3):3873–3896. https://doi.org/10.1007/s42417-023-01092-3
  • Veerapandian V, Pandulu G, Jayaseelan R, Kumar VS, Murali G, Vatin NI (2022) Numerical modelling of geopolymer concrete in-filled fibre-reinforced polymer composite columns subjected to axial compression loading. Materials 15(9):3390. https://doi.org/10.3390/ma15093390
  • Wang X, Qi Y, Sun Y, Xie Z, Liu W (2019) Compressive behavior of composite concrete columns with encased FRP confined concrete cores. Sensors 19(8):1792. https://doi.org/10.3390/s19081792
  • Sasikumar P (2023) A comparative study between buckling behaviour and statistical analysis of axially loaded fully encased composite columns made with high strength concrete. Rev Constr 22(3):694–706. https://doi.org/10.7764/rdlc.22.3.694
  • Ellobody E, Young B (2010) Numerical simulation of concrete encased steel composite columns. J Constr Steel Res 67(2):211–222. https://doi.org/10.1016/j.jcsr.2010.08.003
  • Prasanna K, Sandana Socrates S (n.d.) Study on the structural behavior of concrete encased steel composite column. Int Res J Eng Technol 6:4254-4259.
  • Liew JYR, Lai B, Li S (2018) Finite element analysis of concrete-encased steel composite columns with off- center steel section.12th Int Conf Advances in Steel-Concrete Composite Struct. València, Spain, Jun. 27-29. https://doi.org/10.4995/asccs2018.2018.7005
  • İnce EG, Özkal FM (2024) Optimization of structural steel used in concrete-encased steel composite columns via topology optimization. Appl Sci 14(3):1170. https://doi.org/10.3390/app14031170
  • Cai M, Ke X, Su Y (2020) Axial compressive performance of RAC-encased RACFST composite columns. Eng Struct 210:110393. https://doi.org/10.1016/j.engstruct.2020.110393
  • Siha A, Zhou C (2023) Experimental study and numerical analysis of composite strengthened timber columns under lateral cyclic loading. J Build Eng 67:106077. https://doi.org/10.1016/j.jobe.2023.106077
  • Sun Y, Liu Y, Wu T, Liu X, Lu H (2019) Numerical analysis on flexural behavior of steel fiber-reinforced LWAC beams reinforced with GFRP bars. Appl Sci 9(23):5128. https://doi.org/10.3390/app9235128
  • Shen Z, Liu B, Zhou G (2022) Stressing state analysis of SRC column with modeling test and finite element model data. Appl Sci 12(17):8866. https://doi.org/10.3390/app12178866
  • Zhou X, Liu J (2010) Seismic behavior and strength of tubed steel reinforced concrete (SRC) short columns. J Constr Steel Res 66(7):885–896. https://doi.org/10.1016/j.jcsr.2010.01.020
  • Zhu Y, Wang W, Shi Y, Li M, Wang S, Bao L, Tian Y (2023) Experimental and numerical study on seismic behavior of partially steel-reinforced concrete beam-to-steel tube column joint. J Build Eng 76:107210. https://doi.org/10.1016/j.jobe.2023.107210
  • Engineering Discoveries (2025) Information about reinforcement of columns. https://engineeringdiscoveries.com/information-about-reinforcement-of-columns. Accessed 25 Jun 2025
  • ANSYS (2024) GRANTA Materials Data for Simulation (Sample). https://www.ansys.com/products/materials. Accessed 9 Oct 2024
  • ANSYS (2021) Material property data for engineering materials. https://www.ansys.com/content/dam/amp/2021/august/webpage-requests/education-resources-dam-upload-batch-2/material-property-data-for-eng-materials-BOKENGEN21.pdf. Accessed 25 Jun 2025
  • Riccio A, Saputo S, Sellitto A, Russo A, Di Caprio F, Di Palma L (2019) An insight on the crashworthiness behavior of a full-scale composite fuselage section at different impact angles. Aerospace 6(6):72. https://doi.org/10.3390/aerospace6060072
  • Zhou R, Gao W, Liu W (2021) An MMF3 criterion based multi-scale strategy for the failure analysis of plain-woven fabric composites and its validation in the open-hole compression tests. Materials 14(16):4393. https://doi.org/10.3390/ma14164393
  • El-Nemr A, Ashour O, Hekal G (2016) Finite element modeling of confined concrete piles with FRP tubes in sandy soil under static loading. In: CRC Press eBooks, pp 2122–2127. https://doi.org/10.1201/9781315641645-351
  • Bhatnagar N, Nayak D, Singh I, Chouhan H, Mahajan P (2004) Determination of machining-induced damage characteristics of fiber reinforced plastic composite laminates. Mater Manuf Process 19(6):1009–1023. https://doi.org/10.1081/amp-200035177
  • Liu Y (2013) Choose the best element size to yield accurate FEA results while reduce FE model’s complexity. Br J Eng Technol 1(7):13-28.
  • Sevim B, Altunişik AC (2017) Kompozit kolon elemanların modal davranışlarının belirlenmesi. DÜMF Müh Derg 8(1):13–24. https://doi.org/10.24012/dumf.386614
  • Petyt M (1990) Introduction to finite element vibration analysis. Cambridge University Press, Cambridge
  • Chopra AK (2006) Dynamics of structures: Theory and applications to earthquake engineering, 3rd edn. Prentice Hall, USA
  • Toptaş E, Ersoy S, Bozkurt Y (2018) Investigation on vibration analysis of the effect of fiber breaks in unidirectional composites. Online J. Sci. Technol. 8(3):74-79.
  • Naya F, Pernas-Sánchez J, Fernández C, Zumel P, Droździel-Jurkiewicz M, Bieniaś J (2024) Experimental study of the importance of fibre breakage on the strength of thermoplastic matrix composites subjected to compression after impact. Compos Struct 342:118238. https://doi.org/10.1016/j.compstruct.2024.118238
  • Pramanik A, Basak A, Dong Y, Sarker P, Uddin M, Littlefair G, Dixit A, Chattopadhyaya S (2017) Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys – A review. Compos Part A Appl Sci Manuf 101:1–29. https://doi.org/10.1016/j.compositesa.2017.06.007
  • Kroisová D, Dvořáčková Š, Knap A, Knápek T (2023) Destruction of carbon and glass fibers during chip machining of composite systems. Polym 15(13):2888. https://doi.org/10.3390/polym15132888

Finite element-based modal analysis of carbon and glass fiber reinforced column skeletons

Year 2025, Volume: 5 Issue: 2, 652 - 662, 31.07.2025
https://doi.org/10.61112/jiens.1616436

Abstract

Composite materials are used in sectors such as automotive, defense, marine, and aviation due to the high strength and lightness provided by fiber and matrix material. In addition to these sectors, composites are frequently preferred as coating materials in the construction sector to increase the strength of buildings. The basic structure of the building column is formed by concrete, longitudinal reinforcements, and stirrups. Using steel material in longitudinal reinforcements and stirrups is widely preferred in traditional construction applications. However, in this study where the skeleton of a column widely used in the construction sector is designed, Epoxy Carbon Woven Prepreg and Epoxy S-Glass UD composites were used instead of steel in longitudinal reinforcements. The material of the stirrup is steel. Since the skeleton is more flexible than concrete and thus affects the vibration behavior more, concrete modeling as a matrix material was not included in the analysis. Numerical vibration analysis was performed to examine the dynamic behavior of the skeleton. Vibration analysis was performed for both composite materials and steel. As a result of the analysis, the natural frequencies and mode shapes of the structure were determined. In addition, the effect of the use of composites on the vibration results was revealed by comparing the obtained natural frequencies. Using glass fiber composite instead of steel caused a decrease in the average vibration values, while using carbon fiber composite caused an increase. Using carbon and glass fiber caused an increase in deformation.

References

  • Erbaş Y, Baran M, Mercimek Ö, Anıl O (2022) Karbon fiber takviyeli elyaf kumaşlarla güçlendirilen betonarme kolonların eş merkezli ve tek doğrultulu eğilme yüklemeleri altındaki davranışının deneysel olarak incelenmesi. Bayburt Univ Fen Bilim Derg 5(1):91–103. https://doi.org/10.55117/BUFBD.1118830
  • Ergene B (2021) Çatlak derinliğinin ve fiber açısının karbon fiber takviyeli polimer kompozit kirişin titreşim davranışına etkisinin sonlu elemanlar analizi yöntemi ile belirlenmesi. Int J 3D Print Technol Digit Ind 5(2):120–129. https://doi.org/10.46519/IJ3DPTDI.931530
  • Lyapin A, Shatilov Y (2016) Vibration-based damage detection of the reinforced concrete column. Procedia Eng 150:1867–1871. https://doi.org/10.1016/j.proeng.2016.07.184
  • Özdemir MT, Kobya V, Yaylı MÖ, Mardani-Aghabaglou A (2021) Vibration analysis of steel fiber reinforced self-compacting concrete beam on elastic foundation. Comput Concr 27(2):85–97. https://doi.org/10.12989/CAC.2021.27.2.085
  • Ramkumar K, Kang H (2013) Finite element based investigation of buckling and vibration behaviour of thin walled box beams. Appl Comput Mech 7(2):155-182.
  • Pachaiappan S (2024) Free vibration analysis of FGM beam by numerical analysis. Innov Infrastruct Solut 9(8). https://doi.org/10.1007/s41062-024-01647-7
  • Kim HJ, Cho J (2024) Numerical free vibration analysis of sandwich beams with a steel-ceramic FGM core and FG-CNTRC facesheets. Int J Steel Struct 24(4):734–742. https://doi.org/10.1007/s13296-024-00858-z
  • Belarbi M, Khechai A, Houari MSA, Bessaim A, Hirane H, Garg A (2024) Free vibration behavior of sandwich FGM beams: Parametric and uncertainty analysis. J Vib Eng Technol. https://doi.org/10.1007/s42417-024-01452-7
  • Khiem NT, Huan DT, Hieu TT (2022) Vibration of cracked FGM beam with piezoelectric layer under moving load. J Vib Eng Technol 11(2):755–769. https://doi.org/10.1007/s42417-022-00607-8
  • Wang R, Zhong R, Wang Q (2024) A SGM-IHB approach for nonlinear free and forced vibration analysis of FG-GPLRC beams rested on viscoelastic foundation. Nonlinear Dyn. https://doi.org/10.1007/s11071-024-10506-0
  • Ghazwani MH, Alnujaie A, Youzera H, Meftah SA, Tounsi A (2024) Nonlinear forced vibration investigation of the sandwich porous FGM beams with viscoelastic core layer. Acta Mech 235(5):2889–2904. https://doi.org/10.1007/s00707-024-03865-7
  • Jiang J, Chen W (2024) Dynamic behaviors of general composite beams using mixed finite elements. Int J Mech Sci 281:109687. https://doi.org/10.1016/j.ijmecsci.2024.109687
  • Yan Y, Liu B, Xing Y, Carrera E, Pagani A (2021) Free vibration analysis of variable stiffness composite laminated beams and plates by novel hierarchical differential quadrature finite elements. Compos Struct 274:114364. https://doi.org/10.1016/j.compstruct.2021.114364
  • Liu X, Pagani A, Carrera E, Liu X (2024) Free vibration analysis of composite beams and laminated reinforced panels by refined dynamic stiffness method and CUF-based component-wise theory. Compos Struct 337:118058. https://doi.org/10.1016/j.compstruct.2024.118058
  • Davar A, Azarafza R (2023) Free vibration analysis of functionally graded annular circular plates using classical thin plate theory based on physical neutral surface. J Vib Eng Technol 12(3):3873–3896. https://doi.org/10.1007/s42417-023-01092-3
  • Veerapandian V, Pandulu G, Jayaseelan R, Kumar VS, Murali G, Vatin NI (2022) Numerical modelling of geopolymer concrete in-filled fibre-reinforced polymer composite columns subjected to axial compression loading. Materials 15(9):3390. https://doi.org/10.3390/ma15093390
  • Wang X, Qi Y, Sun Y, Xie Z, Liu W (2019) Compressive behavior of composite concrete columns with encased FRP confined concrete cores. Sensors 19(8):1792. https://doi.org/10.3390/s19081792
  • Sasikumar P (2023) A comparative study between buckling behaviour and statistical analysis of axially loaded fully encased composite columns made with high strength concrete. Rev Constr 22(3):694–706. https://doi.org/10.7764/rdlc.22.3.694
  • Ellobody E, Young B (2010) Numerical simulation of concrete encased steel composite columns. J Constr Steel Res 67(2):211–222. https://doi.org/10.1016/j.jcsr.2010.08.003
  • Prasanna K, Sandana Socrates S (n.d.) Study on the structural behavior of concrete encased steel composite column. Int Res J Eng Technol 6:4254-4259.
  • Liew JYR, Lai B, Li S (2018) Finite element analysis of concrete-encased steel composite columns with off- center steel section.12th Int Conf Advances in Steel-Concrete Composite Struct. València, Spain, Jun. 27-29. https://doi.org/10.4995/asccs2018.2018.7005
  • İnce EG, Özkal FM (2024) Optimization of structural steel used in concrete-encased steel composite columns via topology optimization. Appl Sci 14(3):1170. https://doi.org/10.3390/app14031170
  • Cai M, Ke X, Su Y (2020) Axial compressive performance of RAC-encased RACFST composite columns. Eng Struct 210:110393. https://doi.org/10.1016/j.engstruct.2020.110393
  • Siha A, Zhou C (2023) Experimental study and numerical analysis of composite strengthened timber columns under lateral cyclic loading. J Build Eng 67:106077. https://doi.org/10.1016/j.jobe.2023.106077
  • Sun Y, Liu Y, Wu T, Liu X, Lu H (2019) Numerical analysis on flexural behavior of steel fiber-reinforced LWAC beams reinforced with GFRP bars. Appl Sci 9(23):5128. https://doi.org/10.3390/app9235128
  • Shen Z, Liu B, Zhou G (2022) Stressing state analysis of SRC column with modeling test and finite element model data. Appl Sci 12(17):8866. https://doi.org/10.3390/app12178866
  • Zhou X, Liu J (2010) Seismic behavior and strength of tubed steel reinforced concrete (SRC) short columns. J Constr Steel Res 66(7):885–896. https://doi.org/10.1016/j.jcsr.2010.01.020
  • Zhu Y, Wang W, Shi Y, Li M, Wang S, Bao L, Tian Y (2023) Experimental and numerical study on seismic behavior of partially steel-reinforced concrete beam-to-steel tube column joint. J Build Eng 76:107210. https://doi.org/10.1016/j.jobe.2023.107210
  • Engineering Discoveries (2025) Information about reinforcement of columns. https://engineeringdiscoveries.com/information-about-reinforcement-of-columns. Accessed 25 Jun 2025
  • ANSYS (2024) GRANTA Materials Data for Simulation (Sample). https://www.ansys.com/products/materials. Accessed 9 Oct 2024
  • ANSYS (2021) Material property data for engineering materials. https://www.ansys.com/content/dam/amp/2021/august/webpage-requests/education-resources-dam-upload-batch-2/material-property-data-for-eng-materials-BOKENGEN21.pdf. Accessed 25 Jun 2025
  • Riccio A, Saputo S, Sellitto A, Russo A, Di Caprio F, Di Palma L (2019) An insight on the crashworthiness behavior of a full-scale composite fuselage section at different impact angles. Aerospace 6(6):72. https://doi.org/10.3390/aerospace6060072
  • Zhou R, Gao W, Liu W (2021) An MMF3 criterion based multi-scale strategy for the failure analysis of plain-woven fabric composites and its validation in the open-hole compression tests. Materials 14(16):4393. https://doi.org/10.3390/ma14164393
  • El-Nemr A, Ashour O, Hekal G (2016) Finite element modeling of confined concrete piles with FRP tubes in sandy soil under static loading. In: CRC Press eBooks, pp 2122–2127. https://doi.org/10.1201/9781315641645-351
  • Bhatnagar N, Nayak D, Singh I, Chouhan H, Mahajan P (2004) Determination of machining-induced damage characteristics of fiber reinforced plastic composite laminates. Mater Manuf Process 19(6):1009–1023. https://doi.org/10.1081/amp-200035177
  • Liu Y (2013) Choose the best element size to yield accurate FEA results while reduce FE model’s complexity. Br J Eng Technol 1(7):13-28.
  • Sevim B, Altunişik AC (2017) Kompozit kolon elemanların modal davranışlarının belirlenmesi. DÜMF Müh Derg 8(1):13–24. https://doi.org/10.24012/dumf.386614
  • Petyt M (1990) Introduction to finite element vibration analysis. Cambridge University Press, Cambridge
  • Chopra AK (2006) Dynamics of structures: Theory and applications to earthquake engineering, 3rd edn. Prentice Hall, USA
  • Toptaş E, Ersoy S, Bozkurt Y (2018) Investigation on vibration analysis of the effect of fiber breaks in unidirectional composites. Online J. Sci. Technol. 8(3):74-79.
  • Naya F, Pernas-Sánchez J, Fernández C, Zumel P, Droździel-Jurkiewicz M, Bieniaś J (2024) Experimental study of the importance of fibre breakage on the strength of thermoplastic matrix composites subjected to compression after impact. Compos Struct 342:118238. https://doi.org/10.1016/j.compstruct.2024.118238
  • Pramanik A, Basak A, Dong Y, Sarker P, Uddin M, Littlefair G, Dixit A, Chattopadhyaya S (2017) Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys – A review. Compos Part A Appl Sci Manuf 101:1–29. https://doi.org/10.1016/j.compositesa.2017.06.007
  • Kroisová D, Dvořáčková Š, Knap A, Knápek T (2023) Destruction of carbon and glass fibers during chip machining of composite systems. Polym 15(13):2888. https://doi.org/10.3390/polym15132888
There are 43 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors, Composite and Hybrid Materials
Journal Section Research Article
Authors

Ahmet Murat Aşan 0000-0002-9174-7585

Submission Date January 9, 2025
Acceptance Date April 14, 2025
Publication Date July 31, 2025
Published in Issue Year 2025 Volume: 5 Issue: 2

Cite

APA Aşan, A. M. (2025). Finite element-based modal analysis of carbon and glass fiber reinforced column skeletons. Journal of Innovative Engineering and Natural Science, 5(2), 652-662. https://doi.org/10.61112/jiens.1616436


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0