Research Article
BibTex RIS Cite

Mısır Koçanından Elde Edilen Selüloz Mikrokristalleri ile Takviye Edilmiş Jelatin-Kitosan Kompozit Nanoliflerin Geliştirilmesi

Year 2026, Volume: 6 Issue: 1, 242 - 257, 31.01.2026
https://doi.org/10.61112/jiens.1718642

Abstract

Artan antibakteriyel ve çevre dostu gıda ambalajı talebi, fonksiyonel özellikleri geliştirilmiş biyobozunur malzemelere olan ilgiyi artırmıştır. Bu çalışmada, aktif gıda ambalajı uygulamaları için potansiyel taşıyan doğa bazlı nanolifler elektro-üfleme tekniği kullanılarak üretilmiştir. Biyopolimerik takviye malzemesi olarak, asit hidrolizi yöntemiyle mısır koçanından elde edilen selüloz mikrokristalleri (CMC) ile birlikte jelatin (G) ve kitosan (Ch) kullanılmıştır. Homojen lif morfolojisi elde edebilmek amacıyla formülasyon ve elektro-üfleme parametreleri optimize edilmiştir. Takviye yüklemesinin etkisini incelemek amacıyla, optimize edilen jelatin–kitosan çözeltisine %1, %3 ve %5 (a/a) oranlarında CMC ilave edilmiştir. Elde edilen nanolifler; Alan Emisyonlu Taramalı Elektron Mikroskobu (FE-SEM), Zayıflatılmış Toplam Yansıma-Fourier Dönüşüm Infrared Spektroskopisi (ATR-FTIR), X-ışını Difraksiyonu (XRD), Termogravimetrik Analiz (TGA) ve hava geçirgenliği testleri ile kapsamlı bir şekilde karakterize edilmiştir. Sonuçlar, artan CMC içeriğinin hava geçirgenliğinde kademeli bir artışa neden olduğunu ortaya koymuştur: kontrol örneğinde 2,00 ± 0,65 mm/s olan değer, sırasıyla %1, %3 ve %5 CMC içeren örneklerde 2,10 ± 0,75, 2,40 ± 1,03 ve 2,60 ± 0,90 mm/s olarak ölçülmüştür. Bu bulgular, CMC ilavesinin nanoliflerin yapısal özelliklerini iyileştirebildiğini, ancak bariyer özellikleri üzerindeki etkisinin gıda ambalajı uygulamalarının özel gereksinimlerine göre dikkatle ayarlanması gerektiğini göstermektedir.

References

  • Kalpana S, Priyadarshini S, Leena MM, Moses J, Anandharamakrishnan C (2019) Intelligent packaging: Trends and applications in food systems. Trends Food Sci Technol 93:145–157. https://doi.org/10.1016/j.tifs.2019.09.008
  • Reichert CL, Bugnicourt E, Coltelli MB, Cinelli P, Lazzeri A, Canesi I, et al (2020) Bio-based packaging: Materials, modifications, industrial applications and sustainability. Polymers 12(7):1558. https://doi.org/10.3390/polym12071558
  • Haghighi H, Leugoue SK, Pfeifer F, Siesler HW, Licciardello F, Fava P, Pulvirenti A (2020) Development of antimicrobial films based on chitosan-polyvinyl alcohol blend enriched with ethyl lauroyl arginate (LAE) for food packaging applications. Food Hydrocolloids, 100:105419. https://doi.org/10.1016/j.foodhyd.2019.105419
  • Han J, Ruiz‐Garcia L, Qian J, Yang X (2018) Food packaging: A comprehensive review and future trends. Compr Rev Food Sci Food Saf 17(4):860–877. https://doi.org/10.1111/1541-4337.12343
  • Min T, Zhou L, Sun X, Du H, Zhu Z, Wen Y (2022) Electrospun functional polymeric nanofibers for active food packaging: A review. Food Chem 391:133239. https://doi.org/10.1016/j.foodchem.2022.133239
  • Gulzar S, Tagrida M, Prodpran T, Benjakul S (2022) Antimicrobial film based on polylactic acid coated with gelatin/chitosan nanofibers containing nisin extends the shelf life of Asian seabass slices. Food Packag Shelf Life 34:100941. https://doi.org/10.1016/j.fpsl.2022.100941
  • Amjadi S, Emaminia S, Davudian SH, Pourmohammad S, Hamishehkar H, Roufegarinejad L (2019) Preparation and characterization of gelatin-based nanocomposite containing chitosan nanofiber and ZnO nanoparticles. Carbohydr Polym, 216:376–384. https://doi.org/10.1016/j.carbpol.2019.03.062
  • Wu F, Misra M, Mohanty AK (2021) Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog Polym Sci 117:101395. https://doi.org/10.1016/j.progpolymsci.2021.101395
  • Arkoun M, Daigle F, Heuzey MC Ajji A (2017) Mechanism of action of electrospun chitosan-based nanofibers against meat spoilage and pathogenic bacteria. Molecules 22(4):585. https://doi.org/10.3390/molecules22040585
  • Balasubramaniam SL, Patel AS, Nayak B (2020) Surface modification of cellulose nanofiber film with fatty acids for developing renewable hydrophobic food packaging. Food Packag Shelf Life 26:100587. https://doi.org/10.1016/j.fpsl.2020.100587
  • Fonseca LM, dos Santos Cruxen CE, Bruni GP, Fiorentini ÂM, da Rosa Zavareze E, Lim LT, Dias ARG (2019) Development of antimicrobial and antioxidant electrospun soluble potato starch nanofibers loaded with carvacrol. Int J Biol Macromol 139:1182–1190. https://doi.org/10.1016/j.ijbiomac.2019.08.096
  • Doğan N, Doğan C, Eticha AK, Gungor M, Akgul Y (2022) Centrifugally spun micro-nanofibers based on lemon peel oil/gelatin as novel edible active food packaging: Fabrication, characterization, and application to prevent foodborne pathogens E. coli and S. aureus in cheese. Food Control 139:109081. https://doi.org/10.1016/j.foodcont.2022.109081
  • Flórez M, Guerra-Rodríguez E, Cazón P, Vázquez M (2022) Chitosan for food packaging: Recent advances in active and intelligent films. Food Hydrocolloids 124:107328. https://doi.org/10.1016/j.foodhyd.2021.107328
  • Etichab AK, Akgul Y (2024) Optimization of gelatin nanofibrous webs fabricated via electrically assisted solution blow spinning for air filtration applications. Int J Environ Sci Technol 1–18. https://doi.org/10.1007/s13762-024-05482-2
  • Lu Y, Luo Q, Chu Y, Tao N, Deng S, Wang L, Li L (2022) Application of gelatin in food packaging: A review. Polymers 14(3):436. https://doi.org/10.3390/polym14030436
  • Zhang X, Do MD, Casey P, Sulistio A, Qiao GG, Lundin L, … Kosaraju, S. (2010) Chemical Modification of Gelatin by a Natural Phenolic Cross-linker, Tannic Acid. J Agric Food Chem 58(11):6809–6815. https://doi.org/10.1021/jf1004226
  • Gulzar S, Tagrida M, Nilsuwan K, Prodpran T, Benjakul S (2022) Electrospinning of gelatin/chitosan nanofibers incorporated with tannic acid and chitooligosaccharides on polylactic acid film: Characteristics and bioactivities. Food Hydrocolloids 133:107916. https://doi.org/10.1016/j.foodhyd.2022.107916
  • Akhouy G, Eticha A K, Dogan C, Dogan N, Calisir M D, Toptas A, … Akgul Y (2024) Electro‐blown micro‐nanofibrous mats with Origanum elongatum essential oil for enhancing the shelf life of tomato ( Solanum lycopersicum ). Int J Food Sci Technol 17600. https://doi.org/10.1111/ijfs.17600
  • Momtaz M, Momtaz E, Mehrgardi MA, Momtaz F, Narimani T, Poursina F (2024) Preparation and characterization of gelatin/chitosan nanocomposite reinforced by NiO nanoparticles as an active food packaging. Sci Rep 14(1):519. https://doi.org/10.1038/s41598-023-50260-8
  • Parın FN, Ullah A, Yeşilyurt A, Parın U, Haider MK, Kharaghani D (2022) Development of PVA–psyllium husk meshes via emulsion electrospinning: Preparation, characterization, and antibacterial activity. Polymers 14(7):1490. https://doi.org/10.3390/polym14071490
  • Noorbakhsh-Soltani SM, Zerafat MM, & Sabbaghi S (2018) A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications. Carbohydr Polym 189:48–55. https://doi.org/10.1016/j.carbpol.2018.02.012
  • Bombin ADJ, Dunne NJ, McCarthy HO (2020) Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater Sci Eng C 114:110994. https://doi.org/10.1016/j.msec.2020.110994
  • Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I, Dufresne A, Thomas S (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer 132:368–393. https://doi.org/10.1016/j.polymer.2017.09.043
  • Zhou C, Chu R, Wu R, Wu Q (2011) Electrospun Polyethylene Oxide/Cellulose Nanocrystal Composite Nanofibrous Mats with Homogeneous and Heterogeneous Microstructures. Biomacromolecules 12(7):2617–2625. https://doi.org/10.1021/bm200401p
  • Gómez-García R, Sousa SC, Ramos ÓL, Campos, DA, Aguilar, CN, Madureira, AR, Pintado, M (2024) Obtention and characterization of microcrystalline cellulose from industrial melon residues following a biorefinery approach. Molecules 29(14):3285. https://doi.org/10.3390/molecules29143285
  • Wei Z (2018). Research process of polymer nanofibers prepared by melt spinning. IOP Conf Ser: Mater Sci Eng 452:022002, IOP Publishing. https://doi.org/10.1088/1757-899X/452/2/022002
  • Abi J, Ahmed SB, Dogan C, Dogan N, Akgul (2024) Production and Characterization of Electro-Blown Nanofibers Incorporated with Pine Pollen for Fast-Dissolving Tablet Applications. Available at SSRN 4768545. Retrieved from https://doi.org/10.1016/j.jddst.2024.106222
  • Parin F, Ullah S, Yildirim K, Hashmi M, & Kim I (2021) Fabrication and Characterization of Electrospun Folic Acid/Hybrid Fibers: In Vitro Controlled Release Study and Cytocompatibility Assays, Polymers (Basel) 13 (2021). https://doi.org/10.3390/polym13203594
  • Eticha AK, Toptaş A, Akgül Y, Kiliç A (2023) Electrically assisted solution blow spinning of PVDF/TPU nanofibrous mats for air filtration applications. Turk J Chem 47(1):47–53. https://doi.org/10.55730/1300-0527.3515
  • Akhouy G, Aziz K, Gebrati L, El Achaby M, Akgul Y, Yap PS., … Aziz F (2023) Recent applications on biopolymers electrospinning: strategies, challenges and way forwards. Polym-Plast Technol Mater 1–22. https://doi.org/10.1080/25740881.2023.2234459
  • Dadol GC, Kilic A, Tijing LD, Lim KJA, Cabatingan LK, Tan NPB, … Polat Y (2020) Solution blow spinning (SBS) and SBS-spun nanofibers: Materials, methods, and applications. Mater Today Commun, 25:101656. https://doi.org/10.1016/j.mtcomm.2020.101656
  • Ahmed SB, Doğan N, Akgul Y, Doğan C (2025) Functional Bio-Nanofibers for Active Packaging: Electro-Blown Gelatin/Xanthan Gum with Carbon Dots. Bionanoscience 15(3):338. https://doi.org/10.1007/s12668-025-01929-z
  • Singh HK, Patil T, Vineeth SK, Das S, Pramanik A, Mhaske ST (2020) Isolation of microcrystalline cellulose from corn stover with emphasis on its constituents: corn cover and corn cob. Mater Today Proc, 27:589–594. https://doi.org/10.1016/j.matpr.2019.12.065
  • Thomas MG, Abraham E, Jyotishkumar P, Maria HJ, Pothen LA, Thomas S (2015) Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization. Int J Biol Macromol 81:768–777. https://doi.org/10.1016/j.ijbiomac.2015.08.053
  • Naduparambath S, Jinitha TV, Shaniba V, Sreejith MP, Balan AK, Purushothaman E (2018) Isolation and characterisation of cellulose nanocrystals from sago seed shells. Carbohydr Polym 180:13–20. https://doi.org/10.1016/j.carbpol.2017.09.088
  • Moriana R, Vilaplana F, Ek M (2016) Cellulose nanocrystals from forest residues as reinforcing agents for composites: a study from macro-to nano-dimensions. Carbohydr Polym 139:139–149. https://doi.org/10.1016/j.carbpol.2015.12.020
  • Morsi M, Oraby A, Elshahawy A, Abd El-Hady R (2019) Preparation, structural analysis, morphological investigation and electrical properties of gold nanoparticles filled polyvinyl alcohol/carboxymethyl cellulose blend. J Mater Res Technol 8(6):5996–6010. https://doi.org/10.1016/j.jmrt.2019.09.074
  • Li Z, Mei S, Dong Y, She F, Kong L (2019) High efficiency fabrication of chitosan composite nanofibers with uniform morphology via centrifugal spinning. Polymers 11(10):1550. https://doi.org/10.3390/polym11101550
  • Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M, Razavi B, Sahandi-Zangabad K (2020). Encryption and optical authentication of confidential cellulosic papers by ecofriendly multi-color photoluminescent inks. Carbohydr Polym 245:116507. https://doi.org/10.1016/j.carbpol.2020.116507
  • Ismaili D, Parın FN, Sıcak Y, Öztürk M, Terzioğlu P (2024) Electrospun lavender essential oil-loaded polylactic acid nanofibrous mats for antioxidant applications. Polym Bull 81(15):13975–13992. https://doi.org/10.1007/s00289-024-05370-2
  • Sameen DE, Ahmed S, Lu R, Li R, Dai J, Qin W, … Liu Y (2022) Electrospun nanofibers food packaging: trends and applications in food systems. Crit. Rev. Food Sci Nutr 62(22):6238–6251. https://doi.org/10.1080/10408398.2021.1899128
  • Gong X, Kalantari M, Aslanzadeh S, Boluk Y (2022) Interfacial interactions and electrospinning of cellulose nanocrystals dispersions in polymer solutions: a review. J. Dispersion Sci Technol 43(7):945–977. https://doi.org/10.1080/01932691.2020.1847137
  • Kargarzadeh H, Sheltami RM, Ahmad I, Abdullah I, Dufresne A (2015) Cellulose nanocrystal: A promising toughening agent for unsaturated polyester nanocomposite. Polymer 56:346–357. https://doi.org/10.1016/j.polymer.2014.11.054
  • Habibi S, Hajinasrollah K (2018) Electrospinning of nanofibers based on chitosan/gelatin blend for antibacterial uses. Russ J Appl Chem 91(5):877–881. https://doi.org/10.1134/S1070427218050191
  • Hivechi A, Bahrami SH, Siegel RA (2019) Drug release and biodegradability of electrospun cellulose nanocrystal reinforced polycaprolactone. Mater Sci Eng C 94:929–937. https://doi.org/10.1016/j.msec.2018.10.037
  • Jalaja K, Naskar D, Kundu SC, James NR (2016) Potential of electrospun core–shell structured gelatin–chitosan nanofibers for biomedical applications. Carbohydr Polym 136:1098–1107. https://doi.org/10.1016/j.carbpol.2015.10.014
  • Kumar S, Mudai A, Roy B, Basumatary IB, Mukherjee A, Dutta J (2020) Biodegradable hybrid nanocomposite of chitosan/gelatin and green synthesized zinc oxide nanoparticles for food packaging. Foods 9(9):1143. https://doi.org/10.3390/foods9091143
  • Duan M, Sun J, Huang Y, Jiang H, Hu Y, Pang J, Wu C (2023) Electrospun gelatin/chitosan nanofibers containing curcumin for multifunctional food packaging. Food Sci Hum Wellness 12(2):614–621. https://doi.org/10.1016/j.fshw.2022.07.064
  • Rojas A, Velasquez E, Pina C, Galotto MJ, de Dicastillo CL (2021) Designing active mats based on cellulose acetate/polycaprolactone core/shell structures with different release kinetics. Carbohydr Polym 261:117849. https://doi.org/10.1016/j.carbpol.2021.117849
  • Liu Y, Qin Y, Bai R, Zhang X, Yuan L, Liu J (2019) Preparation of pH-sensitive and antioxidant packaging films based on κ-carrageenan and mulberry polyphenolic extract. Int J Biol Macromol 134:993–1001. https://doi.org/10.1016/j.ijbiomac.2019.05.175
  • Ribeiro AS, Costa SM, Ferreira DP, Abidi H, Fangueiro R (2021) Development of chitosan-gelatin nanofibers with cellulose nanocrystals for skin protection applications. Key Eng Mater 893:45–55. https://doi.org/10.1016/j.ijbiomac.2019.05.175
  • Azubuike CP, Mgboko MS, Ologunagba MO, Oseni BA, Madu SJ, Igwilo CI (2023) Preparation and characterization of corn cob cellulose acetate for potential industrial applications: Nigerian Journal of Pharmacy 57(2):709–718. https://doi. org/10.51412/psnnjp.2023.31
  • Qiao C, Ma X, Zhang J, Yao J (2017) Molecular interactions in gelatin/chitosan composite films. Food Chem 235:45–50. https://doi.org/10.1016/j.foodchem.2017.05.045
  • Li J, Shi X, Yang K, Guo L, Yang J, Lan Z, … Wang X (2024) Fabrication and characterization of carvacrol encapsulated gelatin/chitosan composite nanofiber membrane as active packaging material. Int J Biol Macromol 282:137114. https://doi.org/10.1016/j.ijbiomac.2024.137114
  • Cheah YJ, Yunus MHM, Fauzi MB, Tabata Y, Hiraoka Y, Phang SJ, … Yazid MD (2023) Gelatin–chitosan–cellulose nanocrystals as an acellular scaffold for wound healing application: fabrication, characterisation and cytocompatibility towards primary human skin cells. Cellulose 30(8):5071–5092. https://doi.org/10.1007/s10570-023-05212-w
  • Ahuja S., Patel A., Patel A., & Panda S. (2023) Antibacterial composite film prepared from microcrystalline cellulose-chitosan from libr solution with garlic extraction. International Journal of Biology, Pharmacy and Allied Sciences 12(1). https://doi.org/10.31032/IJBPAS/2023/12.1.6714

Development of gelatin-chitosan composite nanofibers incorporated with Corncob-derived cellulose microcrystals

Year 2026, Volume: 6 Issue: 1, 242 - 257, 31.01.2026
https://doi.org/10.61112/jiens.1718642

Abstract

The increasing demand for sustainable, antibacterial, and eco-friendly food packaging materials has intensified research into biodegradable biopolymers with enhanced functional properties. In this study, gelatin–chitosan-based nanofibers were fabricated via electro-blowing and reinforced with cellulose microcrystals (CMC) extracted from corn cobs via acid hydrolysis. The formulation (12% gelatin and 3% chitosan) and electro-blowing parameters were optimized based on previous literature and preliminary trials to ensure uniform fiber morphology. CMC was incorporated at concentrations of 1, 3, and 5% (w/w), and the resulting nanofibers were characterized using FE-SEM, ATR-FTIR, XRD, TGA, and air permeability tests. SEM analysis revealed smooth, bead-free fibers with average diameters ranging from 642.19 ± 40.36 nm (control) to 760.05 ± 32.64 nm (3% CMC), confirming the impact of filler loading. XRD results demonstrated an increase in crystallinity from 21.3% in the control to 27.8% with 5% CMC. At the same time, TGA indicated enhanced thermal stability at low CMC concentrations, with a maximum decomposition temperature of 326 °C for 1% CMC compared to 315 °C in the control. However, higher loadings (5% CMC) led to slight thermal deterioration, likely due to disruptions in polymer chains. These results confirm that corncob-derived CMC can be successfully integrated into gelatin–chitosan nanofibers to improve structural and thermal properties, positioning them as promising candidates for active food packaging. Future studies will focus on mechanical and antibacterial performance to further validate their practical application.

Supporting Institution

TUBITAK

Thanks

This study was supported by the TUBITAK 2209-A program.

References

  • Kalpana S, Priyadarshini S, Leena MM, Moses J, Anandharamakrishnan C (2019) Intelligent packaging: Trends and applications in food systems. Trends Food Sci Technol 93:145–157. https://doi.org/10.1016/j.tifs.2019.09.008
  • Reichert CL, Bugnicourt E, Coltelli MB, Cinelli P, Lazzeri A, Canesi I, et al (2020) Bio-based packaging: Materials, modifications, industrial applications and sustainability. Polymers 12(7):1558. https://doi.org/10.3390/polym12071558
  • Haghighi H, Leugoue SK, Pfeifer F, Siesler HW, Licciardello F, Fava P, Pulvirenti A (2020) Development of antimicrobial films based on chitosan-polyvinyl alcohol blend enriched with ethyl lauroyl arginate (LAE) for food packaging applications. Food Hydrocolloids, 100:105419. https://doi.org/10.1016/j.foodhyd.2019.105419
  • Han J, Ruiz‐Garcia L, Qian J, Yang X (2018) Food packaging: A comprehensive review and future trends. Compr Rev Food Sci Food Saf 17(4):860–877. https://doi.org/10.1111/1541-4337.12343
  • Min T, Zhou L, Sun X, Du H, Zhu Z, Wen Y (2022) Electrospun functional polymeric nanofibers for active food packaging: A review. Food Chem 391:133239. https://doi.org/10.1016/j.foodchem.2022.133239
  • Gulzar S, Tagrida M, Prodpran T, Benjakul S (2022) Antimicrobial film based on polylactic acid coated with gelatin/chitosan nanofibers containing nisin extends the shelf life of Asian seabass slices. Food Packag Shelf Life 34:100941. https://doi.org/10.1016/j.fpsl.2022.100941
  • Amjadi S, Emaminia S, Davudian SH, Pourmohammad S, Hamishehkar H, Roufegarinejad L (2019) Preparation and characterization of gelatin-based nanocomposite containing chitosan nanofiber and ZnO nanoparticles. Carbohydr Polym, 216:376–384. https://doi.org/10.1016/j.carbpol.2019.03.062
  • Wu F, Misra M, Mohanty AK (2021) Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog Polym Sci 117:101395. https://doi.org/10.1016/j.progpolymsci.2021.101395
  • Arkoun M, Daigle F, Heuzey MC Ajji A (2017) Mechanism of action of electrospun chitosan-based nanofibers against meat spoilage and pathogenic bacteria. Molecules 22(4):585. https://doi.org/10.3390/molecules22040585
  • Balasubramaniam SL, Patel AS, Nayak B (2020) Surface modification of cellulose nanofiber film with fatty acids for developing renewable hydrophobic food packaging. Food Packag Shelf Life 26:100587. https://doi.org/10.1016/j.fpsl.2020.100587
  • Fonseca LM, dos Santos Cruxen CE, Bruni GP, Fiorentini ÂM, da Rosa Zavareze E, Lim LT, Dias ARG (2019) Development of antimicrobial and antioxidant electrospun soluble potato starch nanofibers loaded with carvacrol. Int J Biol Macromol 139:1182–1190. https://doi.org/10.1016/j.ijbiomac.2019.08.096
  • Doğan N, Doğan C, Eticha AK, Gungor M, Akgul Y (2022) Centrifugally spun micro-nanofibers based on lemon peel oil/gelatin as novel edible active food packaging: Fabrication, characterization, and application to prevent foodborne pathogens E. coli and S. aureus in cheese. Food Control 139:109081. https://doi.org/10.1016/j.foodcont.2022.109081
  • Flórez M, Guerra-Rodríguez E, Cazón P, Vázquez M (2022) Chitosan for food packaging: Recent advances in active and intelligent films. Food Hydrocolloids 124:107328. https://doi.org/10.1016/j.foodhyd.2021.107328
  • Etichab AK, Akgul Y (2024) Optimization of gelatin nanofibrous webs fabricated via electrically assisted solution blow spinning for air filtration applications. Int J Environ Sci Technol 1–18. https://doi.org/10.1007/s13762-024-05482-2
  • Lu Y, Luo Q, Chu Y, Tao N, Deng S, Wang L, Li L (2022) Application of gelatin in food packaging: A review. Polymers 14(3):436. https://doi.org/10.3390/polym14030436
  • Zhang X, Do MD, Casey P, Sulistio A, Qiao GG, Lundin L, … Kosaraju, S. (2010) Chemical Modification of Gelatin by a Natural Phenolic Cross-linker, Tannic Acid. J Agric Food Chem 58(11):6809–6815. https://doi.org/10.1021/jf1004226
  • Gulzar S, Tagrida M, Nilsuwan K, Prodpran T, Benjakul S (2022) Electrospinning of gelatin/chitosan nanofibers incorporated with tannic acid and chitooligosaccharides on polylactic acid film: Characteristics and bioactivities. Food Hydrocolloids 133:107916. https://doi.org/10.1016/j.foodhyd.2022.107916
  • Akhouy G, Eticha A K, Dogan C, Dogan N, Calisir M D, Toptas A, … Akgul Y (2024) Electro‐blown micro‐nanofibrous mats with Origanum elongatum essential oil for enhancing the shelf life of tomato ( Solanum lycopersicum ). Int J Food Sci Technol 17600. https://doi.org/10.1111/ijfs.17600
  • Momtaz M, Momtaz E, Mehrgardi MA, Momtaz F, Narimani T, Poursina F (2024) Preparation and characterization of gelatin/chitosan nanocomposite reinforced by NiO nanoparticles as an active food packaging. Sci Rep 14(1):519. https://doi.org/10.1038/s41598-023-50260-8
  • Parın FN, Ullah A, Yeşilyurt A, Parın U, Haider MK, Kharaghani D (2022) Development of PVA–psyllium husk meshes via emulsion electrospinning: Preparation, characterization, and antibacterial activity. Polymers 14(7):1490. https://doi.org/10.3390/polym14071490
  • Noorbakhsh-Soltani SM, Zerafat MM, & Sabbaghi S (2018) A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications. Carbohydr Polym 189:48–55. https://doi.org/10.1016/j.carbpol.2018.02.012
  • Bombin ADJ, Dunne NJ, McCarthy HO (2020) Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater Sci Eng C 114:110994. https://doi.org/10.1016/j.msec.2020.110994
  • Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I, Dufresne A, Thomas S (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer 132:368–393. https://doi.org/10.1016/j.polymer.2017.09.043
  • Zhou C, Chu R, Wu R, Wu Q (2011) Electrospun Polyethylene Oxide/Cellulose Nanocrystal Composite Nanofibrous Mats with Homogeneous and Heterogeneous Microstructures. Biomacromolecules 12(7):2617–2625. https://doi.org/10.1021/bm200401p
  • Gómez-García R, Sousa SC, Ramos ÓL, Campos, DA, Aguilar, CN, Madureira, AR, Pintado, M (2024) Obtention and characterization of microcrystalline cellulose from industrial melon residues following a biorefinery approach. Molecules 29(14):3285. https://doi.org/10.3390/molecules29143285
  • Wei Z (2018). Research process of polymer nanofibers prepared by melt spinning. IOP Conf Ser: Mater Sci Eng 452:022002, IOP Publishing. https://doi.org/10.1088/1757-899X/452/2/022002
  • Abi J, Ahmed SB, Dogan C, Dogan N, Akgul (2024) Production and Characterization of Electro-Blown Nanofibers Incorporated with Pine Pollen for Fast-Dissolving Tablet Applications. Available at SSRN 4768545. Retrieved from https://doi.org/10.1016/j.jddst.2024.106222
  • Parin F, Ullah S, Yildirim K, Hashmi M, & Kim I (2021) Fabrication and Characterization of Electrospun Folic Acid/Hybrid Fibers: In Vitro Controlled Release Study and Cytocompatibility Assays, Polymers (Basel) 13 (2021). https://doi.org/10.3390/polym13203594
  • Eticha AK, Toptaş A, Akgül Y, Kiliç A (2023) Electrically assisted solution blow spinning of PVDF/TPU nanofibrous mats for air filtration applications. Turk J Chem 47(1):47–53. https://doi.org/10.55730/1300-0527.3515
  • Akhouy G, Aziz K, Gebrati L, El Achaby M, Akgul Y, Yap PS., … Aziz F (2023) Recent applications on biopolymers electrospinning: strategies, challenges and way forwards. Polym-Plast Technol Mater 1–22. https://doi.org/10.1080/25740881.2023.2234459
  • Dadol GC, Kilic A, Tijing LD, Lim KJA, Cabatingan LK, Tan NPB, … Polat Y (2020) Solution blow spinning (SBS) and SBS-spun nanofibers: Materials, methods, and applications. Mater Today Commun, 25:101656. https://doi.org/10.1016/j.mtcomm.2020.101656
  • Ahmed SB, Doğan N, Akgul Y, Doğan C (2025) Functional Bio-Nanofibers for Active Packaging: Electro-Blown Gelatin/Xanthan Gum with Carbon Dots. Bionanoscience 15(3):338. https://doi.org/10.1007/s12668-025-01929-z
  • Singh HK, Patil T, Vineeth SK, Das S, Pramanik A, Mhaske ST (2020) Isolation of microcrystalline cellulose from corn stover with emphasis on its constituents: corn cover and corn cob. Mater Today Proc, 27:589–594. https://doi.org/10.1016/j.matpr.2019.12.065
  • Thomas MG, Abraham E, Jyotishkumar P, Maria HJ, Pothen LA, Thomas S (2015) Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization. Int J Biol Macromol 81:768–777. https://doi.org/10.1016/j.ijbiomac.2015.08.053
  • Naduparambath S, Jinitha TV, Shaniba V, Sreejith MP, Balan AK, Purushothaman E (2018) Isolation and characterisation of cellulose nanocrystals from sago seed shells. Carbohydr Polym 180:13–20. https://doi.org/10.1016/j.carbpol.2017.09.088
  • Moriana R, Vilaplana F, Ek M (2016) Cellulose nanocrystals from forest residues as reinforcing agents for composites: a study from macro-to nano-dimensions. Carbohydr Polym 139:139–149. https://doi.org/10.1016/j.carbpol.2015.12.020
  • Morsi M, Oraby A, Elshahawy A, Abd El-Hady R (2019) Preparation, structural analysis, morphological investigation and electrical properties of gold nanoparticles filled polyvinyl alcohol/carboxymethyl cellulose blend. J Mater Res Technol 8(6):5996–6010. https://doi.org/10.1016/j.jmrt.2019.09.074
  • Li Z, Mei S, Dong Y, She F, Kong L (2019) High efficiency fabrication of chitosan composite nanofibers with uniform morphology via centrifugal spinning. Polymers 11(10):1550. https://doi.org/10.3390/polym11101550
  • Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M, Razavi B, Sahandi-Zangabad K (2020). Encryption and optical authentication of confidential cellulosic papers by ecofriendly multi-color photoluminescent inks. Carbohydr Polym 245:116507. https://doi.org/10.1016/j.carbpol.2020.116507
  • Ismaili D, Parın FN, Sıcak Y, Öztürk M, Terzioğlu P (2024) Electrospun lavender essential oil-loaded polylactic acid nanofibrous mats for antioxidant applications. Polym Bull 81(15):13975–13992. https://doi.org/10.1007/s00289-024-05370-2
  • Sameen DE, Ahmed S, Lu R, Li R, Dai J, Qin W, … Liu Y (2022) Electrospun nanofibers food packaging: trends and applications in food systems. Crit. Rev. Food Sci Nutr 62(22):6238–6251. https://doi.org/10.1080/10408398.2021.1899128
  • Gong X, Kalantari M, Aslanzadeh S, Boluk Y (2022) Interfacial interactions and electrospinning of cellulose nanocrystals dispersions in polymer solutions: a review. J. Dispersion Sci Technol 43(7):945–977. https://doi.org/10.1080/01932691.2020.1847137
  • Kargarzadeh H, Sheltami RM, Ahmad I, Abdullah I, Dufresne A (2015) Cellulose nanocrystal: A promising toughening agent for unsaturated polyester nanocomposite. Polymer 56:346–357. https://doi.org/10.1016/j.polymer.2014.11.054
  • Habibi S, Hajinasrollah K (2018) Electrospinning of nanofibers based on chitosan/gelatin blend for antibacterial uses. Russ J Appl Chem 91(5):877–881. https://doi.org/10.1134/S1070427218050191
  • Hivechi A, Bahrami SH, Siegel RA (2019) Drug release and biodegradability of electrospun cellulose nanocrystal reinforced polycaprolactone. Mater Sci Eng C 94:929–937. https://doi.org/10.1016/j.msec.2018.10.037
  • Jalaja K, Naskar D, Kundu SC, James NR (2016) Potential of electrospun core–shell structured gelatin–chitosan nanofibers for biomedical applications. Carbohydr Polym 136:1098–1107. https://doi.org/10.1016/j.carbpol.2015.10.014
  • Kumar S, Mudai A, Roy B, Basumatary IB, Mukherjee A, Dutta J (2020) Biodegradable hybrid nanocomposite of chitosan/gelatin and green synthesized zinc oxide nanoparticles for food packaging. Foods 9(9):1143. https://doi.org/10.3390/foods9091143
  • Duan M, Sun J, Huang Y, Jiang H, Hu Y, Pang J, Wu C (2023) Electrospun gelatin/chitosan nanofibers containing curcumin for multifunctional food packaging. Food Sci Hum Wellness 12(2):614–621. https://doi.org/10.1016/j.fshw.2022.07.064
  • Rojas A, Velasquez E, Pina C, Galotto MJ, de Dicastillo CL (2021) Designing active mats based on cellulose acetate/polycaprolactone core/shell structures with different release kinetics. Carbohydr Polym 261:117849. https://doi.org/10.1016/j.carbpol.2021.117849
  • Liu Y, Qin Y, Bai R, Zhang X, Yuan L, Liu J (2019) Preparation of pH-sensitive and antioxidant packaging films based on κ-carrageenan and mulberry polyphenolic extract. Int J Biol Macromol 134:993–1001. https://doi.org/10.1016/j.ijbiomac.2019.05.175
  • Ribeiro AS, Costa SM, Ferreira DP, Abidi H, Fangueiro R (2021) Development of chitosan-gelatin nanofibers with cellulose nanocrystals for skin protection applications. Key Eng Mater 893:45–55. https://doi.org/10.1016/j.ijbiomac.2019.05.175
  • Azubuike CP, Mgboko MS, Ologunagba MO, Oseni BA, Madu SJ, Igwilo CI (2023) Preparation and characterization of corn cob cellulose acetate for potential industrial applications: Nigerian Journal of Pharmacy 57(2):709–718. https://doi. org/10.51412/psnnjp.2023.31
  • Qiao C, Ma X, Zhang J, Yao J (2017) Molecular interactions in gelatin/chitosan composite films. Food Chem 235:45–50. https://doi.org/10.1016/j.foodchem.2017.05.045
  • Li J, Shi X, Yang K, Guo L, Yang J, Lan Z, … Wang X (2024) Fabrication and characterization of carvacrol encapsulated gelatin/chitosan composite nanofiber membrane as active packaging material. Int J Biol Macromol 282:137114. https://doi.org/10.1016/j.ijbiomac.2024.137114
  • Cheah YJ, Yunus MHM, Fauzi MB, Tabata Y, Hiraoka Y, Phang SJ, … Yazid MD (2023) Gelatin–chitosan–cellulose nanocrystals as an acellular scaffold for wound healing application: fabrication, characterisation and cytocompatibility towards primary human skin cells. Cellulose 30(8):5071–5092. https://doi.org/10.1007/s10570-023-05212-w
  • Ahuja S., Patel A., Patel A., & Panda S. (2023) Antibacterial composite film prepared from microcrystalline cellulose-chitosan from libr solution with garlic extraction. International Journal of Biology, Pharmacy and Allied Sciences 12(1). https://doi.org/10.31032/IJBPAS/2023/12.1.6714
There are 56 citations in total.

Details

Primary Language English
Subjects Polymer Technologies
Journal Section Research Article
Authors

Salih Birhanu Ahmed 0000-0002-3791-2439

Beyza Soydan 0009-0005-1927-3919

Çiğdem Uçar 0009-0002-6288-158X

Emine Tekcan 0009-0009-7080-5588

Ali Toptaş 0000-0002-1176-0844

Harun Çuğ 0000-0002-6322-4269

Yasin Akgül 0000-0001-5643-5968

Submission Date June 12, 2025
Acceptance Date October 11, 2025
Publication Date January 31, 2026
Published in Issue Year 2026 Volume: 6 Issue: 1

Cite

APA Ahmed, S. B., Soydan, B., Uçar, Ç., Tekcan, E., Toptaş, A., Çuğ, H., & Akgül, Y. (2026). Development of gelatin-chitosan composite nanofibers incorporated with Corncob-derived cellulose microcrystals. Journal of Innovative Engineering and Natural Science, 6(1), 242-257. https://doi.org/10.61112/jiens.1718642


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0