Araştırma Makalesi
BibTex RIS Kaynak Göster

The effect of the infinite soil domain idealized by using transmitting and viscous boundaries on the dynamic behavior of concrete gravity dams

Yıl 2022, Cilt: 2 Sayı: 1, 17 - 34, 31.01.2022
https://doi.org/10.29228/JIENS.55012

Öz

The interaction between the structure and the soil on which the structure is built has a very effective effect on the structural behavior. It is unacceptable to consider the dynamic behavior of socioeconomically important structures such as dams independently of soil properties. However, the complex behavior of the infinite soil medium is not easy to idealize as the structural behavior of the dam. For this reason, in addition to the material properties of the infinite soil medium, the infinity feature should also be reflected in the structural modeling. In the finite element methods, where the interaction between the structure and the ground is taken into account, the size of the infinite soil medium causes artificial effects. Appropriate dimesions and boundary conditions should be selected for the soil domain so that artificial effects in the bounded soil domain do not affect the structural behavior. In this study, the effect of viscous and transmitting boundaries proposed for the soil-structure interaction studies was investigated. Sarıyar concrete gravity dam was taken into account for the numerical application. As a result of the study, it has been revealed that the viscous and transmitting boundaries used in dam-soil interaction studies reduce the solution cost and provide a more practical solution in dynamic analysis.

Kaynakça

  • Aydınoğlu MN (1992) Development of analytical techniques in soil-structure interaction. NATO ASI Series-Developments in Dynamic Soil-Structure Interaction, 390:25-42.
  • Lysmer J, Kuhlemeyer RL (1969) Finite dynamic model for infinite media. J. Eng. Mech. Div, 95: 859-877. https://doi.org/10.1061/JMCEA3.0001144
  • Lysmer J (1970) Lumped mass method for Rayleigh waves. Bull. Seismol. Soc. Am. 60:89-104. https://doi.org/10.1785/BSSA0600010089
  • Smith WD (1974) Nonreflecting plane boundary for wave propagation problems. J. Comput. Phys. 15:492–503. https://doi.org/10.1016/0021-9991(74)90075-8
  • Hwang RN, Lysmer J, Berger E (1975) Simplified three-dimensional soil-structure interaction study. Second ASCE Specialty Conference on Structural Design of Nuclear Plant Facilities 786-808.
  • Bettes P (1977) Infinite elements. Int. J. Numer. Methods Eng. 11:53-64. https://doi.org/10.1002/nme.1620110107
  • Clayton R, Engquist B (1977) Absorbing boundary conditions for acoustic and elastic wave equations. Bull. Seismol. Soc. Am. 67:1529-1540. https://doi.org/10.1785/BSSA0670061529
  • Dumanoğlu AA (1980) A method for the dynamic analysis of embedded structures. The Seventh World Conference on Earthquake Engineering, İstanbul, Turkey, 335-339.
  • Liao ZP, Wong HL (1984) A transmitting boundary for the numerical simulation of elastic wave propagation. Soil Dyn. and Earthquake Eng. 3:174-182. https://doi.org/10.1016/0261-7277(84)90033-0
  • Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114:185-200.https://doi.org/10.1006/jcph.1994.1159
  • Chuhan Z, Xinfeng C, Guanglun W (1999) A coupling model of fe-be-ie-ibe for non-linear layered soil-structure interactions. Earthquake Eng. Struct. Dyn. 28:421-441. https://doi.org/10.1002/(SICI)1096-9845(199904)28:4<421::AID-EQE824>3.0.CO;2-J
  • Wolf JP, Song C (2000). Finite-element modelling of unbounded media. John Wiley & Sons Ltd., Chichester
  • Park S, Antin N (2003) A discontinuous galerkin method for seismic soil-structure interaction analysis in the time domain. Earthquake Eng. Struct. Dyn. 33:285-293. https://doi.org/10.1002/eqe.353
  • Liu J, Gu Y, Wang Y, Li B (2006). Efficient procedure for seismic analysis of soil-structure interaction system, Tsinghua Science and Technology, 11:625-631. https://doi.org/10.1016/S1007-0214(06)70244-9
  • Du X, Zhang Y, Zhang B (2006). Nonlinear seismic response analysis of arch dam-foundation systems-part I dam-foundation rock interaction, Bull. Earthquake Eng. 5:105-119. DOI 10.1007/s10518-006-9012-3
  • Kucukcoban S, Kallivokas LF (2011). Mixed perfectly-matched-layers for direct transient analysis in 2D elastic heterogeneous media, Comput. Methods Appl. Mech. Engrg. 200:57–76. 10.1016/J.CMA.2010.07.013
  • Kucukcoban S, Kallivokas LF (2013). A symmetric hybrid formulation for transient wave simulations in PML-truncated heterogeneous media, Wave Motion 50:57-79. https://doi.org/10.1016/j.wavemoti.2012.06.004
  • Mazzotti M, Bartoli I, Marzani A, Viola E (2013). A coupled SAFE-2.5 D BEM approach for the dispersion analysis of damped leaky guided waves in embedded waveguides of arbitrary cross-section, Ultrason. 53:1227-1241. https://doi.org/10.1016/j.ultras.2013.03.003
  • Mazzotti M, Bartoli I, Marzani A (2014). Ultrasonic leaky guided waves in fluid-coupled generic waveguides: hybrid finite-boundary element dispersion analysis and experimental validation, J Appl Phys. 115:143512. https://doi.org/10.1063/1.4870857
  • Poula MK, Zervab A (2019). Comparative evaluation of foundation modeling for SSI analyses using two different ABC approaches: Applications to dams, Eng. Struct. 200:109725. https://doi.org/10.1016/j.engstruct.2019.109725
  • Hibbit, Karlsson, Sorensen (2007) ABAQUS/Standard Analysis User’s Manual, USA.
  • Zhang W, Seylabi EE, Taciroglu E (2019) An ABAQUS toolbox for soil-structure interaction analysis, Comput. Geotech. 114:103143. https://doi.org/10.1016/j.compgeo.2019.103143
  • Lysmer J, Udaka T, Tsai C, Seed HB (1975). FLUSH-A computer program for approximate 3-d analysis of soil-structure interaction problems, Report No. EERC 75-30, Earthquake Engineering Research Center, University of California, Berkeley, California.
  • ANSYS (2013) Swanson analysis system, Pennsylvania, USA
  • Waas G (1972) Linear two-dimensional analysis of soil dynamics problems in semi-infinite layered media, Dissertation, University of California
  • Sesli H (2013) Influence of soil boundary conditions on dynamic behavior of soil-structure interaction systems. Dissertation, Karadeniz Technical University
  • Westergaard HM (1933) Water Pressures on Dams during Earthquakes. Transactions of the American Society of Civil Engineers, 98:418–433. https://doi.org/10.1061/TACEAT.0004496
  • PEER (Pacific Earthquake Engineering Research Centre) (2021), http://peer.berkeley.edu/smcat/data, 15 December 2021.

Geçirgen ve viskoz sınırlar kullanılarak idealleştirilen sonsuz zemin ortamının beton ağırlık barajların dinamik davranışına etkisi

Yıl 2022, Cilt: 2 Sayı: 1, 17 - 34, 31.01.2022
https://doi.org/10.29228/JIENS.55012

Öz

Yapı ve yapının üzerinde inşa edildiği zeminin karşılıklı etkileşimi yapısal davranış üzerinde oldukça etkili olmaktadır. Baraj gibi sosyoekonomik açıdan önemli yapıların dinamik davranışlarının zemin özelliklerinden bağımsız olarak ele alınması kabul edilemez. Fakat, sonsuz zemin ortamının kompleks davranışının baraj gövdesinin yapısal davranışı gibi idealleştirilmesi pek kolay değildir. Bu nedenle sonsuz zemin ortamının malzeme davranışının yanında, sonsuzluk özelliklerinin de yapısal modellemelerde yansıtılabilmesi gerekmektedir. Yapı ve zemin etkileşimin beraber olarak dikkate alındığı sonlu eleman çözüm yöntemlerinde sonsuz zemin ortamının boyutu suni etkilerin ortaya çıkmasına sebep olmaktadır. Sınırlı zemin ortamında ortaya çıkan suni etkilerin yapısal davranışı etkilememesi için zemin ortamı için uygun boyut ve sınır şartının seçilmesi gerekmektedir. Bu çalışmada yapı-zemin etkileşim çalışmaları için önerilen viskoz ve geçirgen sınırların etkisi araştırılmaktadır. Sayısal uygulama için Sarıyar beton ağırlık barajı dikkate alınmıştır. Yapılan çalışma sonucunda baraj-zemin etkileşim çalışmalarında kullanılan viskoz ve geçirgen sınırların çözüm maliyetini azalttığı ve dinamik analizlerde daha pratik çözüm sağladığı ortaya konmuştur.

Kaynakça

  • Aydınoğlu MN (1992) Development of analytical techniques in soil-structure interaction. NATO ASI Series-Developments in Dynamic Soil-Structure Interaction, 390:25-42.
  • Lysmer J, Kuhlemeyer RL (1969) Finite dynamic model for infinite media. J. Eng. Mech. Div, 95: 859-877. https://doi.org/10.1061/JMCEA3.0001144
  • Lysmer J (1970) Lumped mass method for Rayleigh waves. Bull. Seismol. Soc. Am. 60:89-104. https://doi.org/10.1785/BSSA0600010089
  • Smith WD (1974) Nonreflecting plane boundary for wave propagation problems. J. Comput. Phys. 15:492–503. https://doi.org/10.1016/0021-9991(74)90075-8
  • Hwang RN, Lysmer J, Berger E (1975) Simplified three-dimensional soil-structure interaction study. Second ASCE Specialty Conference on Structural Design of Nuclear Plant Facilities 786-808.
  • Bettes P (1977) Infinite elements. Int. J. Numer. Methods Eng. 11:53-64. https://doi.org/10.1002/nme.1620110107
  • Clayton R, Engquist B (1977) Absorbing boundary conditions for acoustic and elastic wave equations. Bull. Seismol. Soc. Am. 67:1529-1540. https://doi.org/10.1785/BSSA0670061529
  • Dumanoğlu AA (1980) A method for the dynamic analysis of embedded structures. The Seventh World Conference on Earthquake Engineering, İstanbul, Turkey, 335-339.
  • Liao ZP, Wong HL (1984) A transmitting boundary for the numerical simulation of elastic wave propagation. Soil Dyn. and Earthquake Eng. 3:174-182. https://doi.org/10.1016/0261-7277(84)90033-0
  • Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114:185-200.https://doi.org/10.1006/jcph.1994.1159
  • Chuhan Z, Xinfeng C, Guanglun W (1999) A coupling model of fe-be-ie-ibe for non-linear layered soil-structure interactions. Earthquake Eng. Struct. Dyn. 28:421-441. https://doi.org/10.1002/(SICI)1096-9845(199904)28:4<421::AID-EQE824>3.0.CO;2-J
  • Wolf JP, Song C (2000). Finite-element modelling of unbounded media. John Wiley & Sons Ltd., Chichester
  • Park S, Antin N (2003) A discontinuous galerkin method for seismic soil-structure interaction analysis in the time domain. Earthquake Eng. Struct. Dyn. 33:285-293. https://doi.org/10.1002/eqe.353
  • Liu J, Gu Y, Wang Y, Li B (2006). Efficient procedure for seismic analysis of soil-structure interaction system, Tsinghua Science and Technology, 11:625-631. https://doi.org/10.1016/S1007-0214(06)70244-9
  • Du X, Zhang Y, Zhang B (2006). Nonlinear seismic response analysis of arch dam-foundation systems-part I dam-foundation rock interaction, Bull. Earthquake Eng. 5:105-119. DOI 10.1007/s10518-006-9012-3
  • Kucukcoban S, Kallivokas LF (2011). Mixed perfectly-matched-layers for direct transient analysis in 2D elastic heterogeneous media, Comput. Methods Appl. Mech. Engrg. 200:57–76. 10.1016/J.CMA.2010.07.013
  • Kucukcoban S, Kallivokas LF (2013). A symmetric hybrid formulation for transient wave simulations in PML-truncated heterogeneous media, Wave Motion 50:57-79. https://doi.org/10.1016/j.wavemoti.2012.06.004
  • Mazzotti M, Bartoli I, Marzani A, Viola E (2013). A coupled SAFE-2.5 D BEM approach for the dispersion analysis of damped leaky guided waves in embedded waveguides of arbitrary cross-section, Ultrason. 53:1227-1241. https://doi.org/10.1016/j.ultras.2013.03.003
  • Mazzotti M, Bartoli I, Marzani A (2014). Ultrasonic leaky guided waves in fluid-coupled generic waveguides: hybrid finite-boundary element dispersion analysis and experimental validation, J Appl Phys. 115:143512. https://doi.org/10.1063/1.4870857
  • Poula MK, Zervab A (2019). Comparative evaluation of foundation modeling for SSI analyses using two different ABC approaches: Applications to dams, Eng. Struct. 200:109725. https://doi.org/10.1016/j.engstruct.2019.109725
  • Hibbit, Karlsson, Sorensen (2007) ABAQUS/Standard Analysis User’s Manual, USA.
  • Zhang W, Seylabi EE, Taciroglu E (2019) An ABAQUS toolbox for soil-structure interaction analysis, Comput. Geotech. 114:103143. https://doi.org/10.1016/j.compgeo.2019.103143
  • Lysmer J, Udaka T, Tsai C, Seed HB (1975). FLUSH-A computer program for approximate 3-d analysis of soil-structure interaction problems, Report No. EERC 75-30, Earthquake Engineering Research Center, University of California, Berkeley, California.
  • ANSYS (2013) Swanson analysis system, Pennsylvania, USA
  • Waas G (1972) Linear two-dimensional analysis of soil dynamics problems in semi-infinite layered media, Dissertation, University of California
  • Sesli H (2013) Influence of soil boundary conditions on dynamic behavior of soil-structure interaction systems. Dissertation, Karadeniz Technical University
  • Westergaard HM (1933) Water Pressures on Dams during Earthquakes. Transactions of the American Society of Civil Engineers, 98:418–433. https://doi.org/10.1061/TACEAT.0004496
  • PEER (Pacific Earthquake Engineering Research Centre) (2021), http://peer.berkeley.edu/smcat/data, 15 December 2021.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Betonarme Yapılar
Bölüm Araştırma Makaleleri
Yazarlar

Hasan Sesli 0000-0003-3328-5922

Yayımlanma Tarihi 31 Ocak 2022
Gönderilme Tarihi 17 Aralık 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 2 Sayı: 1

Kaynak Göster

APA Sesli, H. (2022). Geçirgen ve viskoz sınırlar kullanılarak idealleştirilen sonsuz zemin ortamının beton ağırlık barajların dinamik davranışına etkisi. Journal of Innovative Engineering and Natural Science, 2(1), 17-34. https://doi.org/10.29228/JIENS.55012


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0