Research Article
BibTex RIS Cite

Determination of initial failure loads of 3D printed ABS polymers reinforced with different Kevlar/epoxy composite layers using the finite element method

Year 2025, Volume: 5 Issue: 2, 507 - 519, 31.07.2025
https://doi.org/10.61112/jiens.1602722

Abstract

Additive manufacturing (AM) is a manufacturing method that is rapidly advancing in industrial applications and is also known as 3D printing. Fused Deposition Modeling (FDM) is one of the widely used additive manufacturing techniques due to its ability to produce complex and relatively high strength parts from low-cost polymer materials. One of the most widely used materials with FDM is acrylonitrile butadiene styrene (ABS). However, the low strength and elastic modulus of ABS limit its use alone. The aim of this study was to determine the failure load of different sandwich structures formed with knitted Kevlar/epoxy composite layers in order to improve the properties of ABS by using the finite element method in the ANSYS program. For this purpose, finite element models of tensile and bending samples reinforced by gluing single and double-layered, 0° and 45° oriented Kevlar/epoxy composite layers to the upper and lower surfaces of ABS with FM73 epoxy adhesive were created. For the simulation of tensile and three-point bending tests, the properties of the materials were entered into the program separately, and loading and boundary conditions were applied. In order to determine the initial damage load, the Tsai-Wu strength index value was examined and the damage loads that made this value 1 were determined. Accordingly, although the woven Kevlar/epoxy composite layers carried most of the load during tensile and bending, the initial damage occurred in the ABS layers. As a result, it was observed that the reinforcement of ABS with woven Kevlar/epoxy composite layers significantly increased both rigidity and strength.

References

  • Ngo TD, Kashani A, Imbalzano G, Nguyen, KTQ, Hui D (2018) Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos Part B 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012
  • Dizon JRC, Espera AH, Chen Q (2018) Advincula, R.C. Mechanical characterization of 3D-printed polymers. Addit. Manuf. 20:44–67. https://doi.org/10.1016/j.addma.2017.12.002
  • Mustapha KB, Metwalli KM (2021) A review of fused deposition modelling for 3D printing of smart polymeric materials and composites. Eur Polym J 156:110591. https://doi.org/10.1016/j.eurpolymj.2021.110591
  • Tan LJ, Zhu, W, Zhou, K (2020) Recent Progress on Polymer Materials for Additive Manufacturing. Adv Funct Mater 30:2003062. https://doi.org/10.1002/adfm.202003062
  • Bhagia S, Bornani K, Agrawal R, Satlewal A, Durkovic J, Lagana R, Bhagia M, Yoo CG, Zhao X, Kunc V (2021) Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries. Appl Mater Today 24:101078. https://doi.org/10.1016/j.apmt.2021.101078
  • Shahrubudin N, Lee TC, Ramlan R (2019) An Overview on 3D Printing Technology: Technological, Materials, and Applications. Procedia Manuf 35:1286–1296. https://doi.org/10.1016/j.promfg.2019.06.089
  • Arefin AME, Khatri NR, Kulkarni N, Egan PF (2021) Polymer 3D Printing Review: Materials, Process, and Design Strategies for Medical Applications. Polymers 13:1499. https://doi.org/10.3390/polym13091499
  • Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos B Eng 110:442–458. https://doi.org/10.1016/j.compositesb.2016.11.034
  • Cavalcanti DKK, Banea MD, de Queiroz HFM (2019) Mechanical characterization of bonded joints made of additive manufactured adherends. Annals of “Dunarea de Jos” University of Galati, Fascicle XII. Weld Equip Technol 30:27–33. https://doi.org/10.35219/awet.2019.04
  • Cavalcanti DKK, Banea MD, de Queiroz HFM (2020) Effect of material on the mechanical properties of additive manufactured thermoplastic parts. Annals of “Dunarea de Jos” University of Galati, Fascicle XII. Weld Equip Technol 31:5–12. https://doi.org/10.35219/awet.2020.01
  • Dul S, Fambri L, Pegoretti A (2016) Fused deposition modelling with ABS–graphene nanocomposites. Compos A Appl Sci Manuf 85:181–191. https://doi.org/10.1016/j.compositesa.2016.03.013
  • Galatas A, Hassanin H, Zweiri Y, Seneviratne L (2018) Additive manufactured sandwich composite/ABS parts for unmanned aerial vehicle applications. Polymers 10(11):1262. https://doi.org/10.3390/polym10111262
  • Gohar S, Hussain G, Ali A, Ahmad H (2021) Mechanical performance of honeycomb sandwich structures built by FDM printing technique. J Thermoplast Compos Mater 36(1). https://doi.org/10.1177/0892705721997892
  • Belter JT, Dollar AM (2014) Strengthening of 3D printed robotic parts via fill compositing. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Chicago, IL, USA, pp. https://doi.org/10.1109/IROS.2014.6942959
  • Li G, Zhao J, Wu W, Jiang J, Wang B, Jiang H, Fuh, JYH (2018) Effect of ultrasonic vibration on mechanical properties of 3d printing non-crystalline and semi-crystalline polymers. Materials 11:826. https://doi.org/10.3390/ma11050826
  • Ravi AK, Deshpande A, Hsu KH (2016) An in-process laser localized pre-deposition heating approach to inter-layer bond strengthening in extrusion based polymer additive manufacturing. J Manuf Process 24:179–185. https://doi.org/10.1016/j.jmapro.2016.08.007
  • Daniel KKC, Henrique FMDQ, Jorge SSN, Mariana DB (2022) Strengthening of additive manufactured parts by using different type of fibre reinforcements The International Journal of Advanced Manufacturing Technology 123:1889–1903. https://doi.org/10.1007/s00170-022-10327-8
  • Bin KR, Ferdous N (2012) Kevlar-The Super Tough Fiber. International Journal of Textile Science 1:78-83. https://doi.org/10.5923/j.textile.20120106.04
  • Zhu D, Mobasher B, Rajan SD (2011) Dynamic Tensile Testing of Kevlar 49 Fabrics. Journal of Materials in Civil Engineering 23:1-11. https://doi.org/10.1061/(asce)mt.1943-5533.0000156
  • Içten BM, Karakuzu R, Toygar ME (2006) Failure analysis of woven kevlar fiber reinforced epoxy composites pinned joints. Compos Struct 73(4):443-450. https://doi.org/10.1016/j.compstruct.2005.02.016
  • Cheuk PT, Tong L, Rider AN, Wang J (2005) Analysis of energy release rate for fatigue cracked metal-to-metal double-lap shear joints, International Journal of Adhesion and Adhesives 25:181-191. https://doi.org/10.1016/j.ijadhadh.2004.04.007
  • Han X, Crocombe AD, Anwar SNR, Hu P (2014) The strength prediction of adhesive single lap joints exposed to long term loading in a hostile environment. Int J Adhesion Adhes 55:1–11. https://doi.org/10.1016/j.ijadhadh.2014.06.013
  • Ansys Help Page. Available online: https://ansyshelp.ansys.com/public/account/secured?returnurl=/Views/Secured/corp/v242/en/ans_elem/Hlp_E_SHELL281.html?q=shell281 Erişim 15.11.2024
  • Autar KK (2006) Mechanics of Composite Materials. 2. Baskı, CRC Press Taylor & Francis Group, USA.
  • Wan Y et al (2022) Experimental studies of low-velocity impact behavior on hybrid metal wire net/woven carbon-fiber reinforced composite laminates. Compos Commun 32:101185. https://doi.org/10.1016/j.coco.2022.101185

Farklı Kevlar/epoksi kompozit tabakalarla takviye edilmiş 3D baskı ABS polimerlerin sonlu elemanlar yöntemi ile ilk hasar yüklerinin bulunması

Year 2025, Volume: 5 Issue: 2, 507 - 519, 31.07.2025
https://doi.org/10.61112/jiens.1602722

Abstract

Eklemeli imalat (Additive manufacturing, AM), endüstriyel uygulamalarda hızla ilerleyen ve 3 boyutlu (3D) baskı olarak da bilinen bir imalat yöntemidir. Eriyik yığma modelleme (Fused Deposition Modeling, FDM), düşük maliyetli polimer malzemelerden karmaşık ve nispeten yüksek mukavemetli parçalar üretme kabiliyeti nedeniyle yaygın olarak kullanılan eklemeli imalat tekniklerinden biridir. FDM ile en yaygın kullanılan malzemelerden biri akrilonitril bütadien stiren (ABS) dir. Ancak, ABS'nin düşük dayanım ve elastik modülüne sahip olması tek başına kullanımını sınırlandırmaktadır. Bu çalışmanın amacı, ABS’nin özelliklerini iyileştirmek amacıyla örülmüş Kevlar/epoksi kompozit tabakası ile oluşturulan farklı sandviç yapıların hasar yükünü ANSYS programında sonlu elemanlar yöntemi kullanarak belirlemektir. Bu amaçla, ABS’nin alt ve üst yüzeylerine tek ve çift katmanlı, 0° ve 45° oryantasyonlu örülmüş Kevlar/epoksi kompozit tabakaları FM73 epoksi yapıştırıcı ile yapıştırılarak takviye edilmiş çekme ve eğme numunelerinin sonlu elemanlar modelleri oluşturulmuştur. Çekme ve üç nokta eğme testinin simülasyonu için malzemelerin özellikleri ayrı ayrı programa girilmiş, yükleme ve sınır koşulları uygulanmıştır. İlk hasar yükünü belirlemek için Tsai-Wu dayanım indeks değerine bakılmış ve bu değeri 1 yapan hasar yükleri tespit edilmiştir. Buna göre, çekme ve eğme esnasında yükün büyük kısmını örülmüş Kevlar/epoksi kompozit tabakalar karşılamasına rağmen ilk hasar ABS tabakalarında meydana gelmiştir. Sonuç olarak, ABS’nin örülmüş Kevlar/epoksi kompozit tabakalarla takviyesinin hem rijitliği hem de mukavemeti önemli ölçüde arttırdığı görülmüştür.

References

  • Ngo TD, Kashani A, Imbalzano G, Nguyen, KTQ, Hui D (2018) Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos Part B 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012
  • Dizon JRC, Espera AH, Chen Q (2018) Advincula, R.C. Mechanical characterization of 3D-printed polymers. Addit. Manuf. 20:44–67. https://doi.org/10.1016/j.addma.2017.12.002
  • Mustapha KB, Metwalli KM (2021) A review of fused deposition modelling for 3D printing of smart polymeric materials and composites. Eur Polym J 156:110591. https://doi.org/10.1016/j.eurpolymj.2021.110591
  • Tan LJ, Zhu, W, Zhou, K (2020) Recent Progress on Polymer Materials for Additive Manufacturing. Adv Funct Mater 30:2003062. https://doi.org/10.1002/adfm.202003062
  • Bhagia S, Bornani K, Agrawal R, Satlewal A, Durkovic J, Lagana R, Bhagia M, Yoo CG, Zhao X, Kunc V (2021) Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries. Appl Mater Today 24:101078. https://doi.org/10.1016/j.apmt.2021.101078
  • Shahrubudin N, Lee TC, Ramlan R (2019) An Overview on 3D Printing Technology: Technological, Materials, and Applications. Procedia Manuf 35:1286–1296. https://doi.org/10.1016/j.promfg.2019.06.089
  • Arefin AME, Khatri NR, Kulkarni N, Egan PF (2021) Polymer 3D Printing Review: Materials, Process, and Design Strategies for Medical Applications. Polymers 13:1499. https://doi.org/10.3390/polym13091499
  • Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos B Eng 110:442–458. https://doi.org/10.1016/j.compositesb.2016.11.034
  • Cavalcanti DKK, Banea MD, de Queiroz HFM (2019) Mechanical characterization of bonded joints made of additive manufactured adherends. Annals of “Dunarea de Jos” University of Galati, Fascicle XII. Weld Equip Technol 30:27–33. https://doi.org/10.35219/awet.2019.04
  • Cavalcanti DKK, Banea MD, de Queiroz HFM (2020) Effect of material on the mechanical properties of additive manufactured thermoplastic parts. Annals of “Dunarea de Jos” University of Galati, Fascicle XII. Weld Equip Technol 31:5–12. https://doi.org/10.35219/awet.2020.01
  • Dul S, Fambri L, Pegoretti A (2016) Fused deposition modelling with ABS–graphene nanocomposites. Compos A Appl Sci Manuf 85:181–191. https://doi.org/10.1016/j.compositesa.2016.03.013
  • Galatas A, Hassanin H, Zweiri Y, Seneviratne L (2018) Additive manufactured sandwich composite/ABS parts for unmanned aerial vehicle applications. Polymers 10(11):1262. https://doi.org/10.3390/polym10111262
  • Gohar S, Hussain G, Ali A, Ahmad H (2021) Mechanical performance of honeycomb sandwich structures built by FDM printing technique. J Thermoplast Compos Mater 36(1). https://doi.org/10.1177/0892705721997892
  • Belter JT, Dollar AM (2014) Strengthening of 3D printed robotic parts via fill compositing. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Chicago, IL, USA, pp. https://doi.org/10.1109/IROS.2014.6942959
  • Li G, Zhao J, Wu W, Jiang J, Wang B, Jiang H, Fuh, JYH (2018) Effect of ultrasonic vibration on mechanical properties of 3d printing non-crystalline and semi-crystalline polymers. Materials 11:826. https://doi.org/10.3390/ma11050826
  • Ravi AK, Deshpande A, Hsu KH (2016) An in-process laser localized pre-deposition heating approach to inter-layer bond strengthening in extrusion based polymer additive manufacturing. J Manuf Process 24:179–185. https://doi.org/10.1016/j.jmapro.2016.08.007
  • Daniel KKC, Henrique FMDQ, Jorge SSN, Mariana DB (2022) Strengthening of additive manufactured parts by using different type of fibre reinforcements The International Journal of Advanced Manufacturing Technology 123:1889–1903. https://doi.org/10.1007/s00170-022-10327-8
  • Bin KR, Ferdous N (2012) Kevlar-The Super Tough Fiber. International Journal of Textile Science 1:78-83. https://doi.org/10.5923/j.textile.20120106.04
  • Zhu D, Mobasher B, Rajan SD (2011) Dynamic Tensile Testing of Kevlar 49 Fabrics. Journal of Materials in Civil Engineering 23:1-11. https://doi.org/10.1061/(asce)mt.1943-5533.0000156
  • Içten BM, Karakuzu R, Toygar ME (2006) Failure analysis of woven kevlar fiber reinforced epoxy composites pinned joints. Compos Struct 73(4):443-450. https://doi.org/10.1016/j.compstruct.2005.02.016
  • Cheuk PT, Tong L, Rider AN, Wang J (2005) Analysis of energy release rate for fatigue cracked metal-to-metal double-lap shear joints, International Journal of Adhesion and Adhesives 25:181-191. https://doi.org/10.1016/j.ijadhadh.2004.04.007
  • Han X, Crocombe AD, Anwar SNR, Hu P (2014) The strength prediction of adhesive single lap joints exposed to long term loading in a hostile environment. Int J Adhesion Adhes 55:1–11. https://doi.org/10.1016/j.ijadhadh.2014.06.013
  • Ansys Help Page. Available online: https://ansyshelp.ansys.com/public/account/secured?returnurl=/Views/Secured/corp/v242/en/ans_elem/Hlp_E_SHELL281.html?q=shell281 Erişim 15.11.2024
  • Autar KK (2006) Mechanics of Composite Materials. 2. Baskı, CRC Press Taylor & Francis Group, USA.
  • Wan Y et al (2022) Experimental studies of low-velocity impact behavior on hybrid metal wire net/woven carbon-fiber reinforced composite laminates. Compos Commun 32:101185. https://doi.org/10.1016/j.coco.2022.101185
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Solid Mechanics, Numerical Methods in Mechanical Engineering, Material Design and Behaviors, Numerical Modelling and Mechanical Characterisation
Journal Section Research Articles
Authors

Semih Benli 0000-0003-0763-9838

Publication Date July 31, 2025
Submission Date December 16, 2024
Acceptance Date March 17, 2025
Published in Issue Year 2025 Volume: 5 Issue: 2

Cite

APA Benli, S. (2025). Farklı Kevlar/epoksi kompozit tabakalarla takviye edilmiş 3D baskı ABS polimerlerin sonlu elemanlar yöntemi ile ilk hasar yüklerinin bulunması. Journal of Innovative Engineering and Natural Science, 5(2), 507-519. https://doi.org/10.61112/jiens.1602722


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0