Research Article
BibTex RIS Cite

Investigation of structural behavior of reinforced concrete deep beams with regular geometric openings using finite element method

Year 2025, Volume: 5 Issue: 2, 765 - 782, 31.07.2025
https://doi.org/10.61112/jiens.1670778

Abstract

Reinforced concrete deep beams have begun to be widely used in the design and production of reinforced concrete structures today, thanks to their contribution to structural behavior. Since the height and span values of the deep beams are close to each other, there are situations where openings are left in the deep beam body for the installation of electricity, water, sewage, communication, heating and ventilation installations of the buildings. Due to the placement and geometric shape of these openings left in the beam body, much more complex changes in structural behavior are observed, and nonlinear approaches come to the fore in stress and strain calculations. In this study, the modification of the structural behavior of a deep beam in the presence of regular geometric openings is investigated using the finite element method. The study was carried out in four phases and in the first phase, the appropriate size and material properties of the deep beam elements with regular openings were determined. In the second stage, the deep beam elements whose dimensions, material properties and reinforcement details were determined were modeled with ABAQUS software using finite element modeling technique. In the third phase, the load arrangement to be applied to the deep beam was determined, and in the last phase, the displacement-controlled static analysis of the deep beam was performed depending on the determined loading arrangement. The aim of the study is to determine the impact of regular geometric spans in the deep beam web on the collapse behavior, maximum load carrying capacity, ductility and stiffness of the beam

References

  • ACI Committee 3 (2008) Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary. American Concrete Institute .
  • Kong FK (1991) Reinforced concrete deep beams. CRC Press.
  • Ersoy U, Özcebe G (2001) Betonarme (2. Basım), İstanbul, Evrim Yayınevi.
  • Hassoun MN, Al-Manaseer A (2020) Structural concrete: theory and design, John Wiley & Sons.
  • Abadel AA, Abbas H, Alshaikh IM, Tuladhar R, Altheeb A, Alamri M (2023) Experimental study on the effects of external strengthening and elevated temperature on the shear behavior of ultra-high-performance fiber-reinforced concrete deep beams. Struct 49:943-957. https://doi.org/10.1016/j.istruc.2023.02.004
  • Abbas H, Almusallam T, Abadel A, Alenzi S, Al-Salloum Y (2023) Shear strength of functionally graded self-compacting concrete deep beams reinforced with steel and GFRP bars. Case Stud Constr Mater 18:e01872. https://doi.org/10.1016/j.cscm.2023.e01872
  • Jasim WA, Allawi AA, Oukaili NK (2019) Effect of size and location of square web openings on the entire behavior of reinforced concrete deep beams. Civ Eng J 5(1):209-226. https://doi.org/10.28991/cej-2019-03091239
  • Abadel A, Alenzi S, Almusallam T, Abbas H, Al-Salloum Y (2023) Shear behavior of self-consolidating concrete deep beams reinforced with hybrid of steel and GFRP bars. Ain Shams Eng J 14(9): 102136. https://doi.org/10.1016/j.asej.2023.102136
  • Albidah A, Abadel A, Abbas H, Almusallam T, Al-Salloum Y (2019) Experimental and analytical study of strengthening schemes for shear deficient RC deep beams. Constr Build Mater 216:673-686.
  • Hu OE, Tan KH (2007) Large reinforced-concrete deep beams with web openings: test and strut-and-tie results. Mag Concr Res 59(6):423-434.
  • Ashour AF, Rishi G (2000) Tests of reinforced concrete continuous deep beams with web openings. Struct J 97(3):418-426.
  • Özkal FM (2017) Betonarme yüksek kirişlerde boşluk konumu ve şeklinin yapısal davranış üzerindeki etkilerinin deneysel olarak incelenmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22(2):149-160.
  • Hu OE, Tan KH, Liu XH (2007) Behaviour and strut-and-tie predictions of high-strength concrete deep beams with trapezoidal web openings. Mag Concr Res 59(7):529-541.
  • Nair N, Kavitha PE (2015) Effect of openings in deep beams using strut and tie model method. Int J Tech Res Appl, 3:59-62.
  • Kadhim AA, Kadhim HM (2023) Experimental investigation of rubberized reinforced concrete continuous deep beams. J King Saud Univ Eng Sci 35(3): 174-184.
  • Al-Mahbashi M, Elsanadedy H, Abbas H, Abadel A, Al-Salloum Y (2023) Experimental and numerical study of high strength reinforced concrete continuous deep beams with circular and rectangular openings. J Build Eng 79:107868.
  • Quadri AI (2023) Shear response of reinforced concrete deep beams with and without web opening. Innov Infrastruct Solut 8:316. https://doi.org/10.1007/s41062-023-01286-4
  • Amiri S, Masoudnia R (2011) Investigation of the opening effects on the behavior of concrete beams without additional reinforcement in opening region using fem method. Aust J Basic Appl Sci 5(5):617-627.
  • Dundar B (2008) Düzenli boşluklara sahip betonarme kirişlerin davranış ve dayanımı, Doctoral dissertation, Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü.
  • Aykaç S, Yılmaz M (2011) Düzenli üçgen veya dairesel boşluklara sahip betonarme kirişlerin davranış ve dayanımı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 26(3):711-718.
  • Kalkan İ (2014) Düzenli boşluklu betornarme kirişlerin düzlem içi eğilme davranışları. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 29(1):155-163. https://doi.org/10.17341/gummfd.94985
  • Abaqus/CAE V6.12 (2018) Programme, Dassault Systemes Simulia Corp. Providence, RI, USA.
  • Alfarah B (2017) Advanced Computationally Efficient Modeling of RC Structures Nonlinear Cyclic Behavior. UPC, Departament d'Enginyeria Civil i Ambiental, Tesi doctoral.
  • Ren W, Sneed LH, Yang Y, He R (2015) Numerical simulation of prestressed precast concrete bridge deck panels using damage plasticity model. Int J Concr Struct Mater 9:45-54. https://doi.org/10.1007/s40069-014-0091-2
  • Labibzadeh M, Zakeri M, Adel Shoaib A (2017) A new method for CDP input parameter identification of the ABAQUS software guaranteeing uniqueness and precision. Int J Struct Integr 8(2):264-284. https://doi.org/10.1108/IJSI-03-2016-0010
  • Zhao G, Zhang M, Li Y, Li D (2016) The hysteresis performance and restoring force model for corroded reinforced concrete frame columns. J Eng 2016(1): 7615385.
  • Vitorino H, Rodrigues H, Couto C (2020, February) Evaluation of post-earthquake fire capacity of a reinforced concrete one bay plane frame under ISO fire exposure. Struct 23:602-611.
  • Kamath P, Sharma UK, Kumar V, Bhargava P, Usmani A, Singh B, ... Pankaj P (2015) Full-scale fire test on an earthquake-damaged reinforced concrete frame. Fire Saf J 73:1-19.
  • Shah AH, Sharma UK, Bhargava P (2017) Outcomes of a major research on full scale testing of RC frames in post earthquake fire. Constr Build Mater 155:1224-1241. https://doi.org/10.1016/j.conbuildmat.2017.07.100
  • Luna Molina FJ, Fernández Ruiz MA, Hernández Montes E, Alonso Alonso MC (2015) Bond strength of galvanized steel: experimental and numerical study based on pull-out tests. In 3rd International Conference on Mechanical Models in Structural Engineering, 143-158. Sevilla, España.
  • Çolakoğlu HE, Hüsem M (2025) Investigation of the cyclic load behavior of reinforced concrete frames exposed to high temperatures using the finite element method. Sigma J Eng Nat Sci 43(3):857-877.
  • Michał S, Andrzej W (2015) Calibration of the CDP model parameters in Abaqus. The 2015 World Congress on Advances in Structural Engineering and Mechanics (ASEM2015), Incheon, Korea.
  • Dere Y, Koroglu MA (2017) Nonlinear FE modeling of reinforced concrete. Int J Struct Civ Eng Res 6(1):71-74.
  • Ersoy U, Özcebe G (2018) Betonarme, Orta Doğu Teknik Üniversitesi, Evrim Yayınevi, Ankara.

Düzenli Geometrik Boşluklara Sahip Betonarme Derin Kirişlerin Yapısal Davranışının Sonlu Elemanlar Metodu Kullanılarak İncelenmesi

Year 2025, Volume: 5 Issue: 2, 765 - 782, 31.07.2025
https://doi.org/10.61112/jiens.1670778

Abstract

Betonarme derin kirişler yapısal davranışa verdiği katkı ile birlikte günümüzde betonarme yapıların projelendirilmesinde ve üretiminde yaygın olarak kullanılmaya başlamıştır. Ancak derin kirişlerin yükseklik ve açıklık değerlerinin birbirine yakın olması nedeniyle yapıların elektrik, su, kanalizasyon, haberleşme, ısıtma ve havalandırma tesisatlarının kurulumu amacıyla derin kiriş gövdesinde boşluk bırakılması durumları oluşmaktadır. Kiriş gövdesinde bırakılan bu boşlukların konumu ve geometrik şekline bağlı olarak yapısal davranışta çok daha karmaşık değişimler görülmekte, gerilme ve şekildeğiştirme hesaplarında doğrusal olmayan yaklaşımlar ön plana çıkmaktadır. Bu çalışmada derin kiriş üzerinde düzenli geometrik boşlukların olması halinde yapısal davranıştaki değişim sonlu eleman metodu kullanılarak incelenmiştir. Çalışma dört aşamada gerçekleştirilmiş olup, ilk aşamada düzenli boşluklu derin kiriş elemanlarının uygun boyut ve malzeme özellikleri belirlenmiştir. İkinci aşamada; boyutları, malzeme özellikleri ve donatı detayları belirlenen derin kiriş elemanları sonlu eleman modelleme tekniği kullanılarak ABAQUS yazılımı ile modellenmiştir. Üçüncü aşamada derin kirişe uygulanacak yükün düzeneği belirlenmiş, son aşamada ise derin kirişin belirlenen yükleme düzeneğine bağlı olarak yerdeğiştirme kontrollü statik analizi gerçekleştirilmiştir. Çalışmada derin kiriş gövdesindeki düzenli geometrik boşlukların, kirişin göçme davranışına, maksimum yük taşıma kapasitesi ile süneklik ve rijitliğine etkisinin belirlenmesi hedeflenmiştir.

References

  • ACI Committee 3 (2008) Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary. American Concrete Institute .
  • Kong FK (1991) Reinforced concrete deep beams. CRC Press.
  • Ersoy U, Özcebe G (2001) Betonarme (2. Basım), İstanbul, Evrim Yayınevi.
  • Hassoun MN, Al-Manaseer A (2020) Structural concrete: theory and design, John Wiley & Sons.
  • Abadel AA, Abbas H, Alshaikh IM, Tuladhar R, Altheeb A, Alamri M (2023) Experimental study on the effects of external strengthening and elevated temperature on the shear behavior of ultra-high-performance fiber-reinforced concrete deep beams. Struct 49:943-957. https://doi.org/10.1016/j.istruc.2023.02.004
  • Abbas H, Almusallam T, Abadel A, Alenzi S, Al-Salloum Y (2023) Shear strength of functionally graded self-compacting concrete deep beams reinforced with steel and GFRP bars. Case Stud Constr Mater 18:e01872. https://doi.org/10.1016/j.cscm.2023.e01872
  • Jasim WA, Allawi AA, Oukaili NK (2019) Effect of size and location of square web openings on the entire behavior of reinforced concrete deep beams. Civ Eng J 5(1):209-226. https://doi.org/10.28991/cej-2019-03091239
  • Abadel A, Alenzi S, Almusallam T, Abbas H, Al-Salloum Y (2023) Shear behavior of self-consolidating concrete deep beams reinforced with hybrid of steel and GFRP bars. Ain Shams Eng J 14(9): 102136. https://doi.org/10.1016/j.asej.2023.102136
  • Albidah A, Abadel A, Abbas H, Almusallam T, Al-Salloum Y (2019) Experimental and analytical study of strengthening schemes for shear deficient RC deep beams. Constr Build Mater 216:673-686.
  • Hu OE, Tan KH (2007) Large reinforced-concrete deep beams with web openings: test and strut-and-tie results. Mag Concr Res 59(6):423-434.
  • Ashour AF, Rishi G (2000) Tests of reinforced concrete continuous deep beams with web openings. Struct J 97(3):418-426.
  • Özkal FM (2017) Betonarme yüksek kirişlerde boşluk konumu ve şeklinin yapısal davranış üzerindeki etkilerinin deneysel olarak incelenmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22(2):149-160.
  • Hu OE, Tan KH, Liu XH (2007) Behaviour and strut-and-tie predictions of high-strength concrete deep beams with trapezoidal web openings. Mag Concr Res 59(7):529-541.
  • Nair N, Kavitha PE (2015) Effect of openings in deep beams using strut and tie model method. Int J Tech Res Appl, 3:59-62.
  • Kadhim AA, Kadhim HM (2023) Experimental investigation of rubberized reinforced concrete continuous deep beams. J King Saud Univ Eng Sci 35(3): 174-184.
  • Al-Mahbashi M, Elsanadedy H, Abbas H, Abadel A, Al-Salloum Y (2023) Experimental and numerical study of high strength reinforced concrete continuous deep beams with circular and rectangular openings. J Build Eng 79:107868.
  • Quadri AI (2023) Shear response of reinforced concrete deep beams with and without web opening. Innov Infrastruct Solut 8:316. https://doi.org/10.1007/s41062-023-01286-4
  • Amiri S, Masoudnia R (2011) Investigation of the opening effects on the behavior of concrete beams without additional reinforcement in opening region using fem method. Aust J Basic Appl Sci 5(5):617-627.
  • Dundar B (2008) Düzenli boşluklara sahip betonarme kirişlerin davranış ve dayanımı, Doctoral dissertation, Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü.
  • Aykaç S, Yılmaz M (2011) Düzenli üçgen veya dairesel boşluklara sahip betonarme kirişlerin davranış ve dayanımı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 26(3):711-718.
  • Kalkan İ (2014) Düzenli boşluklu betornarme kirişlerin düzlem içi eğilme davranışları. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 29(1):155-163. https://doi.org/10.17341/gummfd.94985
  • Abaqus/CAE V6.12 (2018) Programme, Dassault Systemes Simulia Corp. Providence, RI, USA.
  • Alfarah B (2017) Advanced Computationally Efficient Modeling of RC Structures Nonlinear Cyclic Behavior. UPC, Departament d'Enginyeria Civil i Ambiental, Tesi doctoral.
  • Ren W, Sneed LH, Yang Y, He R (2015) Numerical simulation of prestressed precast concrete bridge deck panels using damage plasticity model. Int J Concr Struct Mater 9:45-54. https://doi.org/10.1007/s40069-014-0091-2
  • Labibzadeh M, Zakeri M, Adel Shoaib A (2017) A new method for CDP input parameter identification of the ABAQUS software guaranteeing uniqueness and precision. Int J Struct Integr 8(2):264-284. https://doi.org/10.1108/IJSI-03-2016-0010
  • Zhao G, Zhang M, Li Y, Li D (2016) The hysteresis performance and restoring force model for corroded reinforced concrete frame columns. J Eng 2016(1): 7615385.
  • Vitorino H, Rodrigues H, Couto C (2020, February) Evaluation of post-earthquake fire capacity of a reinforced concrete one bay plane frame under ISO fire exposure. Struct 23:602-611.
  • Kamath P, Sharma UK, Kumar V, Bhargava P, Usmani A, Singh B, ... Pankaj P (2015) Full-scale fire test on an earthquake-damaged reinforced concrete frame. Fire Saf J 73:1-19.
  • Shah AH, Sharma UK, Bhargava P (2017) Outcomes of a major research on full scale testing of RC frames in post earthquake fire. Constr Build Mater 155:1224-1241. https://doi.org/10.1016/j.conbuildmat.2017.07.100
  • Luna Molina FJ, Fernández Ruiz MA, Hernández Montes E, Alonso Alonso MC (2015) Bond strength of galvanized steel: experimental and numerical study based on pull-out tests. In 3rd International Conference on Mechanical Models in Structural Engineering, 143-158. Sevilla, España.
  • Çolakoğlu HE, Hüsem M (2025) Investigation of the cyclic load behavior of reinforced concrete frames exposed to high temperatures using the finite element method. Sigma J Eng Nat Sci 43(3):857-877.
  • Michał S, Andrzej W (2015) Calibration of the CDP model parameters in Abaqus. The 2015 World Congress on Advances in Structural Engineering and Mechanics (ASEM2015), Incheon, Korea.
  • Dere Y, Koroglu MA (2017) Nonlinear FE modeling of reinforced concrete. Int J Struct Civ Eng Res 6(1):71-74.
  • Ersoy U, Özcebe G (2018) Betonarme, Orta Doğu Teknik Üniversitesi, Evrim Yayınevi, Ankara.
There are 34 citations in total.

Details

Primary Language English
Subjects Reinforced Concrete Buildings, Numerical Modelization in Civil Engineering
Journal Section Research Articles
Authors

Halit Erdem Çolakoğlu 0000-0002-4498-3569

Publication Date July 31, 2025
Submission Date April 6, 2025
Acceptance Date June 28, 2025
Published in Issue Year 2025 Volume: 5 Issue: 2

Cite

APA Çolakoğlu, H. E. (2025). Investigation of structural behavior of reinforced concrete deep beams with regular geometric openings using finite element method. Journal of Innovative Engineering and Natural Science, 5(2), 765-782. https://doi.org/10.61112/jiens.1670778


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0