Research Article
BibTex RIS Cite

Effect of reaction wheel configurations on control performance in low earth orbit satellites

Year 2025, Volume: 5 Issue: 2, 853 - 870, 31.07.2025
https://doi.org/10.61112/jiens.1711195

Abstract

This study involves a comprehensive modeling and analysis process for the attitude control of a satellite operating in low Earth orbit (LEO). Initially, a mathematical model representing the satellite's rotational motions along the x, y, and z axes—namely roll, pitch, and yaw—was derived. Subsequently, the electrical and mechanical properties of the reaction wheel systems employed for precise attitude control were examined in detail. The attitude control was achieved by driving each reaction wheel with a DC motor, and the torque and angular velocity parameters generated by the motors were regulated using Proportional-Integral-Derivative (PID) controllers. Three different reaction wheel configurations were investigated: the standard orthogonal three-wheel setup, the tetrahedral four-wheel configuration, and the pyramid four-wheel structure. For each configuration, a comparative analysis was conducted in terms of system performance, control stability, and energy efficiency. The findings indicate that pyramid four-wheel configuration exhibits the highest energy consumption. The results demonstrate that selecting an appropriate configuration in accordance with mission requirements plays a critical role in determining the overall performance of the attitude control system.

References

  • Vatalaro F, Corazza GE, Caini C and Ferrarelli C (1995) Analysis of LEO, MEO, and GEO global mobile satellite systems in the presence of interference and fading. IEEE Journal on Selected Areas in Communications 13:291-300. https://doi.org/10.1109/49.345873
  • Jung D, Nam H, Choi J and Love D (2024) Modeling and Analysis of GEO Satellite Networks. IEEE Transactions on Wireless Communications 23:16757-16770. https://doi.org/10.1109/TWC.2024.3447229
  • Xin J, Li, K (2024) Orbit Determination Method for BDS-3 MEO Satellites Based on Multi-Source Observation Links. Remote Sens 16:3702. https://doi.org/10.3390/rs16193702
  • Pingping W and Xuemai G (2004) Key issues of multiple access technique for LEO satellite communication systems. Journal of Systems Engineering and Electronics 15:120-125.
  • Avanzini G, Angelis E, Giulietti F, Serrano N (2019) Attitude control of Low Earth Orbit satellites by reaction wheels and magnetic torquers. Acta Astronautica 160:625-634. https://doi.org/10.1016/j.actaastro.2019.03.013
  • Tehrani D, Givi R, Crunteanu H, Cican D (2021) G. Adaptive Predictive Functional Control of X-Y Pedestal for LEO Satellite Tracking Using Laguerre Functions. Applied Sciences 11:9794. https://doi.org/10.3390/app11219794
  • Ofodile I, Ehrpais H, Slavinskis A and Anbarjafari G (2019) Stabilised LQR Control and Optimised Spin Rate Control for Nanosatellites. 9th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, June 11-14.
  • Utkin V (1992) Sliding Modes in Control and Optimization. Springer-Verlag, Berlin, Heidelberg.
  • Ioannou P and Sun J (1995) Robust Adaptive Control. Prentice Hall, Englewood cliffs.
  • Zhang Y, Wang J, and Wang H (2022) A Review on AI-Based Spacecraft Attitude Control. Aerospace Science and Technology 129:1-6.
  • Yun S (2023) Generating Low-Earth Orbit Satellite Attitude Maneuver Profiles Using Deep Neural Networks. Sensors 23:4650. https://doi.org/10.3390/s23104650
  • Fortescue P, Stark J, and Swinerd G, Spacecraft Systems Engineering, 4th ed. Wiley, 2011.
  • Bostan I, Simion M, and Hangan L (2020) Reaction Wheel Configurations for Fault Tolerant Control. IEEE Access 8:208112–208123.
  • Wertz J (1978) Spacecraft Attitude Determination and Control. Springer.
  • Hughes P (1986) Spacecraft Attitude Dynamics. New York, Wiley.
  • Reed B (2019) Tetrahedral Reaction Wheel Arrays for Improved Control. IEEE Aerospace Conference Proceedings, Montana, USA, March 2-9.
  • Tanygin S (2010) Analysis of Pyramid Reaction Wheel Configurations. Aerospace Science and Technology 14:558–567.
  • Qiao J, Liu L, and Wang M (2021) Fault Tolerant Tetrahedral Wheel Configurations for Spacecraft, Acta Astronautica 180:202–211.
  • Kim Y, Lee D, and Park S (2015) Orthogonal Reaction Wheel Layouts: Benefits and Limits. IEEE Transactions on Aerospace and Electronic Systems 51:1342–1351.
  • Karataş S (2020) LEO Satellites: Dynamic Modelling, Simulations and Some Nonlinear Attitude Control Techniques. Dissertation, Middle East Technical University.
  • Kutlu A (2019) Design of Kalman Filter Based Attitude Determination Algorithms for a LEO Satellite and for a Satellite Attitude Control Test Setup. Dissertation, Middle East Technical University.
  • Efendioğlu G (2021) Design of Kalman Filter Based Attitude Determination and Control Algorithms for a LEO Satellite. Dissertation, Middle East Technical University.
  • Kök İ (2022) Comparison and Analysis of Attitude Control Systems of a Satellite Using Reaction Wheel Actuators. Dissertation, Middle East Technical University.

Alçak yörünge uydularında itki teker konfigürasyonlarının kontrol performansına etkisi

Year 2025, Volume: 5 Issue: 2, 853 - 870, 31.07.2025
https://doi.org/10.61112/jiens.1711195

Abstract

Bu çalışma, alçak Dünya yörüngesinde (LEO) görev yapan bir uydunun yönelim kontrolünü sağlamak amacıyla gerçekleştirilen modelleme, analiz ve denetim sürecini kapsamaktadır. Çalışmada, uydunun x, y, z eksenlerindeki dönme hareketlerini tanımlayan roll (yuvarlanma), pitch (yunuslama) ve yaw (sapma) yönelim dinamiklerine dayalı matematiksel model oluşturulmuş, ardından yönelim kontrolünü sağlayan itki tekeri sistemlerinin elektriksel ve mekanik özellikleri detaylı şekilde incelenmiştir. Kontrol sistemi, her bir tekerin bir DC motorla sürülmesi ve bu motorların oluşturduğu tork ile açısal hızların PID denetleyiciler aracılığıyla kontrol edilmesiyle gerçekleştirilmiştir. Üç farklı itki tekeri konfigürasyonu olan ortogonal 3 teker, dörtyüzlü 4 teker ve piramit 4 teker yapıları karşılaştırmalı olarak analiz edilmiştir. Her konfigürasyon için yuvarlanma, yunuslama ve sapma yönelimlerine sırasıyla 0.4 rad/s, 0.8 rad/s ve 1 rad/s yönelim açıları uygulanmış ve sistemin istenilen yönelime ulaşma süresi dörtyüzlü ve piramit konfigürasyonlarda yaklaşık 1 saniye, ortogonal yapıda ise yaklaşık 0,5 saniye olarak gözlemlenmiştir. Performans değerlendirmesi sonucunda ortogonal yapı 7.266×10⁻⁷ W güç harcayarak 15.633×10⁻⁷ rad/s maksimum açısal hıza ulaşırken, dörtyüzlü yapı 7.768×10⁻⁷ W güç harcamış ve 18.232×10⁻⁷ rad/s hıza ulaşmıştır; piramit yapı ise en yüksek tüketimi ve hızı sergileyerek 7.817×10⁻⁷ W güç ve 18.468×10⁻⁷ rad/s maksimum açısal hız üretmiştir. Sonuçlar, yönelim kontrol sistemlerinde görev profiline uygun konfigürasyon seçiminin, sistemin enerji verimliliği, yönelim doğruluğu ve kararlılığı üzerinde belirleyici olduğunu göstermektedir.

References

  • Vatalaro F, Corazza GE, Caini C and Ferrarelli C (1995) Analysis of LEO, MEO, and GEO global mobile satellite systems in the presence of interference and fading. IEEE Journal on Selected Areas in Communications 13:291-300. https://doi.org/10.1109/49.345873
  • Jung D, Nam H, Choi J and Love D (2024) Modeling and Analysis of GEO Satellite Networks. IEEE Transactions on Wireless Communications 23:16757-16770. https://doi.org/10.1109/TWC.2024.3447229
  • Xin J, Li, K (2024) Orbit Determination Method for BDS-3 MEO Satellites Based on Multi-Source Observation Links. Remote Sens 16:3702. https://doi.org/10.3390/rs16193702
  • Pingping W and Xuemai G (2004) Key issues of multiple access technique for LEO satellite communication systems. Journal of Systems Engineering and Electronics 15:120-125.
  • Avanzini G, Angelis E, Giulietti F, Serrano N (2019) Attitude control of Low Earth Orbit satellites by reaction wheels and magnetic torquers. Acta Astronautica 160:625-634. https://doi.org/10.1016/j.actaastro.2019.03.013
  • Tehrani D, Givi R, Crunteanu H, Cican D (2021) G. Adaptive Predictive Functional Control of X-Y Pedestal for LEO Satellite Tracking Using Laguerre Functions. Applied Sciences 11:9794. https://doi.org/10.3390/app11219794
  • Ofodile I, Ehrpais H, Slavinskis A and Anbarjafari G (2019) Stabilised LQR Control and Optimised Spin Rate Control for Nanosatellites. 9th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, June 11-14.
  • Utkin V (1992) Sliding Modes in Control and Optimization. Springer-Verlag, Berlin, Heidelberg.
  • Ioannou P and Sun J (1995) Robust Adaptive Control. Prentice Hall, Englewood cliffs.
  • Zhang Y, Wang J, and Wang H (2022) A Review on AI-Based Spacecraft Attitude Control. Aerospace Science and Technology 129:1-6.
  • Yun S (2023) Generating Low-Earth Orbit Satellite Attitude Maneuver Profiles Using Deep Neural Networks. Sensors 23:4650. https://doi.org/10.3390/s23104650
  • Fortescue P, Stark J, and Swinerd G, Spacecraft Systems Engineering, 4th ed. Wiley, 2011.
  • Bostan I, Simion M, and Hangan L (2020) Reaction Wheel Configurations for Fault Tolerant Control. IEEE Access 8:208112–208123.
  • Wertz J (1978) Spacecraft Attitude Determination and Control. Springer.
  • Hughes P (1986) Spacecraft Attitude Dynamics. New York, Wiley.
  • Reed B (2019) Tetrahedral Reaction Wheel Arrays for Improved Control. IEEE Aerospace Conference Proceedings, Montana, USA, March 2-9.
  • Tanygin S (2010) Analysis of Pyramid Reaction Wheel Configurations. Aerospace Science and Technology 14:558–567.
  • Qiao J, Liu L, and Wang M (2021) Fault Tolerant Tetrahedral Wheel Configurations for Spacecraft, Acta Astronautica 180:202–211.
  • Kim Y, Lee D, and Park S (2015) Orthogonal Reaction Wheel Layouts: Benefits and Limits. IEEE Transactions on Aerospace and Electronic Systems 51:1342–1351.
  • Karataş S (2020) LEO Satellites: Dynamic Modelling, Simulations and Some Nonlinear Attitude Control Techniques. Dissertation, Middle East Technical University.
  • Kutlu A (2019) Design of Kalman Filter Based Attitude Determination Algorithms for a LEO Satellite and for a Satellite Attitude Control Test Setup. Dissertation, Middle East Technical University.
  • Efendioğlu G (2021) Design of Kalman Filter Based Attitude Determination and Control Algorithms for a LEO Satellite. Dissertation, Middle East Technical University.
  • Kök İ (2022) Comparison and Analysis of Attitude Control Systems of a Satellite Using Reaction Wheel Actuators. Dissertation, Middle East Technical University.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Control Engineering, Mechatronics and Robotics (Other)
Journal Section Research Articles
Authors

Seda Kartal 0000-0003-4756-5490

Publication Date July 31, 2025
Submission Date June 1, 2025
Acceptance Date July 26, 2025
Published in Issue Year 2025 Volume: 5 Issue: 2

Cite

APA Kartal, S. (2025). Alçak yörünge uydularında itki teker konfigürasyonlarının kontrol performansına etkisi. Journal of Innovative Engineering and Natural Science, 5(2), 853-870. https://doi.org/10.61112/jiens.1711195


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0