Yıl 2020, Cilt 10 , Sayı 1, Sayfalar 601 - 608 2020-03-01

Complex-Clifford Tori and Special Complex Unitary Matrices
Complex-Clifford Tori and Special Complex Unitary Matrices

Hasan ES [1]


In this paper, parallels of latitude and meridians of longitude in S_C^3 are identified via the special complex unitary matrices 〖SU〗_C (2). It is also obtained that the third homology group of complex 2-sphere S_C^2 equal to zero.

In this paper, parallels of latitude and meridians of longitude in S_C^3 are identified via the special complex unitary matrices 〖SU〗_C (2). It is also obtained that the third homology group of complex 2-sphere S_C^2 equal to zero.

  • Ata E, Yayli Y, 2009. Dual quaternions and dual projective spaces. Chaos, Solitons & Fractals, 40(3), 1255-1263.
  • Bekar M, Yayli Y, 2013. Involutions of complexified quaternions and split quaternions. Advances in Applied Clifford Algebras, 23(2), 283-299.
  • Chevalley C, 1946. Theory of Lie groups Princeton Univ. Press, Princeton, NJ-USA.
  • Hamilton W R, 1844. On a new species of imaginary quantities connected with a theory of quaternions. In Proceedings of the Royal Irish Academy (Vol. 2, No. 424-434, pp. 4-1).
  • Hamilton W R, 1853. Chapter VI in: Lectures on Quaternions. Hodges and Smith, Dublin, Available online at Cornell University Library: http://historical.library.cornell.edu/math/. (Date of access: 16 June 2019).
  • Tait P G, 1890. An elementary treatise on quaternions. University Press, Michigan-USA.
  • Toth G, 1998. Glimpses of algebra and geometry. Springer Science & Business Media, NY-USA.
Birincil Dil en
Konular Matematik
Yayımlanma Tarihi Mart-2020
Bölüm Matematik / Mathematics
Yazarlar

Orcid: 0000-0002-7732-8173
Yazar: Hasan ES (Sorumlu Yazar)
Kurum: GAZİ ÜNİVERSİTESİ, GAZİ EĞİTİM FAKÜLTESİ
Ülke: Turkey


Tarihler

Başvuru Tarihi : 4 Aralık 2019
Kabul Tarihi : 18 Ocak 2020
Yayımlanma Tarihi : 1 Mart 2020

Bibtex @araştırma makalesi { jist655069, journal = {Journal of the Institute of Science and Technology}, issn = {2146-0574}, eissn = {2536-4618}, address = {}, publisher = {Iğdır Üniversitesi}, year = {2020}, volume = {10}, pages = {601 - 608}, doi = {10.21597/jist.655069}, title = {Complex-Clifford Tori and Special Complex Unitary Matrices}, key = {cite}, author = {ES, Hasan} }
APA ES, H . (2020). Complex-Clifford Tori and Special Complex Unitary Matrices. Journal of the Institute of Science and Technology , 10 (1) , 601-608 . DOI: 10.21597/jist.655069
MLA ES, H . "Complex-Clifford Tori and Special Complex Unitary Matrices". Journal of the Institute of Science and Technology 10 (2020 ): 601-608 <https://dergipark.org.tr/tr/pub/jist/issue/52503/655069>
Chicago ES, H . "Complex-Clifford Tori and Special Complex Unitary Matrices". Journal of the Institute of Science and Technology 10 (2020 ): 601-608
RIS TY - JOUR T1 - Complex-Clifford Tori and Special Complex Unitary Matrices AU - Hasan ES Y1 - 2020 PY - 2020 N1 - doi: 10.21597/jist.655069 DO - 10.21597/jist.655069 T2 - Journal of the Institute of Science and Technology JF - Journal JO - JOR SP - 601 EP - 608 VL - 10 IS - 1 SN - 2146-0574-2536-4618 M3 - doi: 10.21597/jist.655069 UR - https://doi.org/10.21597/jist.655069 Y2 - 2020 ER -
EndNote %0 Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi Complex-Clifford Tori and Special Complex Unitary Matrices %A Hasan ES %T Complex-Clifford Tori and Special Complex Unitary Matrices %D 2020 %J Journal of the Institute of Science and Technology %P 2146-0574-2536-4618 %V 10 %N 1 %R doi: 10.21597/jist.655069 %U 10.21597/jist.655069
ISNAD ES, Hasan . "Complex-Clifford Tori and Special Complex Unitary Matrices". Journal of the Institute of Science and Technology 10 / 1 (Mart 2020): 601-608 . https://doi.org/10.21597/jist.655069
AMA ES H . Complex-Clifford Tori and Special Complex Unitary Matrices. Iğdır Üniv. Fen Bil Enst. Der.. 2020; 10(1): 601-608.
Vancouver ES H . Complex-Clifford Tori and Special Complex Unitary Matrices. Journal of the Institute of Science and Technology. 2020; 10(1): 608-601.