Research Article
BibTex RIS Cite

Investigation of wetting and hydrophobic properties of bitumen modified with different vegetable oils

Year 2021, Volume: 2 Issue: 2, 0 - 0, 31.12.2021
https://doi.org/10.53635/jit.1000449

Abstract

In this study, the effects of oils obtained from vegetable products on the physical, mechanical and hydrophobic properties of bitumen were investigated. Within the scope of the study, six different vegetable oils were used for bitumen modification: hemp oil, flax seed oil, laurel ghee, centaury oil, castor oil, pine turpentine oil. These are 100% pure vegetable oils, obtained by using cold press method. The bitumen was modified by adding vegetable oils to bitumen with the proportions of 3%, 5% and 7%. Including the reference group, 19 sample groups were formed with six different vegetable oils by using three different mixing ratios. The physical and mechanical properties of the prepared bitumen samples were determined, according to their contact angles their sensitivity to water, surface wetting and hydrophobic properties were determined by using the IMAGEJ program. As a conclusion of the results of the studies, it has been introduced that different vegetable oils cause serious changes in the physical and mechanical properties of bitumen, and in addition, bitumen modified with vegetable oils can make a significant contribution to removal of water from the road surface which is a major problem for traffic safety.

References

  • Singh, M., Kumar, P., & Maurya, M. R. (2013). Strength characteristics of SBS modified asphalt mixes with various aggregates. Construction and Building Materials, 41, 815-823. https://doi.org/10.1016/j.conbuildmat.2012.12.062
  • Fernandes, A., & Neves, J. (2014). Threshold values of pavement surface properties for maintenance purposes based on accidents modelling. International Journal of Pavement Engineering, 15(10), 917-924. https://doi.org/10.1080/10298436.2014.893324
  • Yan, X., Radwan, E., & Abdel-Aty, M. (2005). Characteristics of rear-end accidents at signalized intersections using multiple logistic regression model. Accident Analysis & Prevention, 37(6), 983-995. https://doi.org/10.1016/j.aap.2005.05.001
  • Lee, J., Nam, B., & Abdel-Aty, M. (2015). Effects of pavement surface conditions on traffic crash severity. Journal of Transportation Engineering, 141(10), 04015020. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000785
  • Little, D. N., Allen, D. H., & Bhasin, A. (2018). Chemical and mechanical processes influencing adhesion and moisture damage in hot mix asphalt pavements. In Modeling and design of flexible pavements and materials (pp. 123-186). Springer, Cham. https://doi.org/10.1007/978-3-319-58443-0_4
  • Tarefder, R. A., & Arifuzzaman, M. (2011). A study of moisture damage in plastomeric polymer modified asphalt binder using functionalized AFM tips. Journal of Systemics, Cybernetics and Informatics, 9(5), 1-12.
  • Selvavathi, V., Sekar, V. A., Sriram, V., & Sairam, B. (2002). Modifications of bitumen by elastomer and reactive polymer—a comparative study. Petroleum science and technology, 20(5-6), 535-547. https://doi.org/10.1081/LFT-120003577
  • Kibar, A. (2016). An investigation of droplet bubble and liquid jet dynamics on superhydrophobic and hydrophobic surfaces. Pamukkale University Journal of Engineering Sciences, 22(7), 613-619. https://dx.doi.org/10.5505/pajes.2016.07088
  • Bağdat S., 2016. http://kimya.balikesir.edu.tr/seminerler/dokuman/20200108kaderozturk.pdf
  • Leja, J. (1982). Surface Chemistry of Froth Flotation Plenum. p. 758, New York.
  • Evcin, A., Ersoy, B., Uygunoğlu, T., & Güneş, İ. (2018). Farklı mineral katkıların epoksi zemin kaplama malzemesinin ıslanmazlığına ve yüzey enerjisine etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33(2), 599-610. https://doi.org/10.17341/gazimmfd.416368
  • Le, N. L., & Nunes, S. P. (2016). Materials and membrane technologies for water and energy sustainability. Sustainable Materials and Technologies, 7, 1-28. https://doi.org/10.1016/j.susmat.2016.02.001
  • Arukalam, I. O., Oguzie, E. E., & Li, Y. (2016). Fabrication of FDTS-modified PDMS-ZnO nanocomposite hydrophobic coating with anti-fouling capability for corrosion protection of Q235 steel. Journal of colloid and interface science, 484, 220-228. https://doi.org/10.1016/j.jcis.2016.08.064
  • Zdziennicka, A., Szymczyk, K., & Jańczuk, B. (2009). Correlation between surface free energy of quartz and its wettability by aqueous solutions of nonionic, anionic and cationic surfactants. Journal of colloid and interface science, 340(2), 243-248. https://doi.org/10.1016/j.jcis.2009.08.040
  • Gönül, N. (2000). Süspansiyon ve Emülsiyon Teknolojisi. Ankara Üniversitesi Eczacılık Fakültesi Eczacılık Teknolojisi Bölümü, Ankara, 93.
  • Karaman, M., & Uçar, T. (2016). Enhanced mechanical properties of low-surface energy thin films by simultaneous plasma polymerization of fluorine and epoxy containing polymers. Applied Surface Science, 362, 210-216. https://doi.org/10.1016/j.apsusc.2015.11.254
  • Hiemenz, P.C., (1986). Principles of Colloid And Surface Chemistry, 2nd Ed.; Marcel Dekker Inc., New York.
  • Kapilashrami, A., Eskilsson, K., Bergström, L., & Malmsten, M. (2004). Drying of oil-in-water emulsions on hydrophobic and hydrophilic substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 233(1-3), 155-161. https://doi.org/10.1016/j.colsurfa.2003.11.022
  • Gao, Z., Zhai, X., Liu, F., Zhang, M., Zang, D., & Wang, C. (2015). Fabrication of TiO2/EP super-hydrophobic thin film on filter paper surface. Carbohydrate polymers, 128, 24-31. https://doi.org/10.1016/j.carbpol.2015.04.014
  • Azemar, F., Faÿ, F., Réhel, K., & Linossier, I. (2015). Development of hybrid antifouling paints. Progress in Organic Coatings, 87, 10-19. https://doi.org/10.1016/j.porgcoat.2015.04.007
  • Chrzan, K. L. (2007). Performance of hydrophobic epoxy insulators under industrial pollution.
  • Syakur, A., Berahim, H., & Rochmadi, T. (2012). Hydrophobic contact angle and surface degradation of epoxy resin compound with silicon rubber and silica. Electrical and Electronic Engineering, 2(5), 284-291. http://doi.org/10.5923/j.eee.20120205.07
  • Mehmetalioğlu, C., Olgun, U., Şen, Ş., Şen, U., Akıncı, A., Akcan, E., & Özüyağlı, A. (2017). Nano TiO2 dolgulu polimer esaslı hidrofobik kaplamanın yüzey özelliklerinin incelenmesi. Sakarya University Journal of Science, 21(2), 77-81. https://doi.org/10.16984/saufenbilder.296793
  • Giovannini, G., Lucchesi, S., & Cervelli, S. (1983). Water-repellent substances and aggregate stability in hydrophobic soil. Soil Science, 135(2), 110-113.
  • Tittarelli, F. (2009). Oxygen diffusion through hydrophobic cement-based materials. Cement and Concrete Research, 39(10), 924-928. https://doi.org/10.1016/j.cemconres.2009.06.021
  • Wong, H. S., Barakat, R., Alhilali, A., Saleh, M., & Cheeseman, C. R. (2015). Hydrophobic concrete using waste paper sludge ash. Cement and Concrete Research, 70, 9-20. https://doi.org/10.1016/j.cemconres.2015.01.005
  • Tittarelli, F., & Moriconi, G. (2008). The effect of silane-based hydrophobic admixture on corrosion of reinforcing steel in concrete. Cement and Concrete Research, 38(11), 1354-1357. https://doi.org/10.1016/j.cemconres.2008.06.009
  • Tittarelli, F., & Moriconi, G. (2010). The effect of silane-based hydrophobic admixture on corrosion of galvanized reinforcing steel in concrete. Corrosion Science, 52(9), 2958-2963. https://doi.org/10.1016/j.corsci.2010.05.008
  • Lal, S., Poulikakos, L., Jerjen, I., Vontobel, P., Partl, M. N., Derome, D., & Carmeliet, J. (2017). Wetting and drying in hydrophobic, macroporous asphalt structures. Construction and Building Materials, 152, 82-95. https://doi.org/10.1016/j.conbuildmat.2017.06.145
  • Zakerzadeh, M., Abtahi, S. M., Allafchian, A., & Chamani, M. R. (2018). Examining the effect of different super hydrophobic nanomaterials on asphalt pavements. Construction and Building Materials, 180, 285-290. https://doi.org/10.1016/j.conbuildmat.2018.04.190
  • Gao, Y., Qu, L., He, B., Dai, K., Fang, Z., & Zhu, R. (2018). Study on effectiveness of anti-icing and deicing performance of super-hydrophobic asphalt concrete. Construction and Building Materials, 191, 270-280. https://doi.org/10.1016/j.conbuildmat.2018.10.009
  • Nahvi, A., Sadoughi, M. K., Arabzadeh, A., Sassani, A., Hu, C., Ceylan, H., & Kim, S. (2019). Multi-objective Bayesian optimization of super hydrophobic coatings on asphalt concrete surfaces. Journal of Computational Design and Engineering, 6(4), 693-704. https://doi.org/10.1016/j.jcde.2018.11.005
  • Han, S., Yao, T., & Yang, X. (2019). Preparation and anti-icing properties of a hydrophobic emulsified asphalt coating. Construction and Building Materials, 220, 214-227. https://doi.org/10.1016/j.conbuildmat.2019.06.021
  • Han, S., Yao, T., Han, X., Hongwei, Z., & Yang, X. (2020). Performance evaluation of waterborne epoxy resin modified hydrophobic emulsified asphalt micro-surfacing mixture. Construction and Building Materials, 249, 118835. https://doi.org/10.1016/j.conbuildmat.2020.118835
  • Dalhat, M. A., & Adesina, A. Y. (2020). Utilization of micronized recycled polyethylene waste to improve the hydrophobicity of asphalt surfaces. Construction and Building Materials, 240, 117966. https://doi.org/10.1016/j.conbuildmat.2019.117966
Year 2021, Volume: 2 Issue: 2, 0 - 0, 31.12.2021
https://doi.org/10.53635/jit.1000449

Abstract

References

  • Singh, M., Kumar, P., & Maurya, M. R. (2013). Strength characteristics of SBS modified asphalt mixes with various aggregates. Construction and Building Materials, 41, 815-823. https://doi.org/10.1016/j.conbuildmat.2012.12.062
  • Fernandes, A., & Neves, J. (2014). Threshold values of pavement surface properties for maintenance purposes based on accidents modelling. International Journal of Pavement Engineering, 15(10), 917-924. https://doi.org/10.1080/10298436.2014.893324
  • Yan, X., Radwan, E., & Abdel-Aty, M. (2005). Characteristics of rear-end accidents at signalized intersections using multiple logistic regression model. Accident Analysis & Prevention, 37(6), 983-995. https://doi.org/10.1016/j.aap.2005.05.001
  • Lee, J., Nam, B., & Abdel-Aty, M. (2015). Effects of pavement surface conditions on traffic crash severity. Journal of Transportation Engineering, 141(10), 04015020. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000785
  • Little, D. N., Allen, D. H., & Bhasin, A. (2018). Chemical and mechanical processes influencing adhesion and moisture damage in hot mix asphalt pavements. In Modeling and design of flexible pavements and materials (pp. 123-186). Springer, Cham. https://doi.org/10.1007/978-3-319-58443-0_4
  • Tarefder, R. A., & Arifuzzaman, M. (2011). A study of moisture damage in plastomeric polymer modified asphalt binder using functionalized AFM tips. Journal of Systemics, Cybernetics and Informatics, 9(5), 1-12.
  • Selvavathi, V., Sekar, V. A., Sriram, V., & Sairam, B. (2002). Modifications of bitumen by elastomer and reactive polymer—a comparative study. Petroleum science and technology, 20(5-6), 535-547. https://doi.org/10.1081/LFT-120003577
  • Kibar, A. (2016). An investigation of droplet bubble and liquid jet dynamics on superhydrophobic and hydrophobic surfaces. Pamukkale University Journal of Engineering Sciences, 22(7), 613-619. https://dx.doi.org/10.5505/pajes.2016.07088
  • Bağdat S., 2016. http://kimya.balikesir.edu.tr/seminerler/dokuman/20200108kaderozturk.pdf
  • Leja, J. (1982). Surface Chemistry of Froth Flotation Plenum. p. 758, New York.
  • Evcin, A., Ersoy, B., Uygunoğlu, T., & Güneş, İ. (2018). Farklı mineral katkıların epoksi zemin kaplama malzemesinin ıslanmazlığına ve yüzey enerjisine etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33(2), 599-610. https://doi.org/10.17341/gazimmfd.416368
  • Le, N. L., & Nunes, S. P. (2016). Materials and membrane technologies for water and energy sustainability. Sustainable Materials and Technologies, 7, 1-28. https://doi.org/10.1016/j.susmat.2016.02.001
  • Arukalam, I. O., Oguzie, E. E., & Li, Y. (2016). Fabrication of FDTS-modified PDMS-ZnO nanocomposite hydrophobic coating with anti-fouling capability for corrosion protection of Q235 steel. Journal of colloid and interface science, 484, 220-228. https://doi.org/10.1016/j.jcis.2016.08.064
  • Zdziennicka, A., Szymczyk, K., & Jańczuk, B. (2009). Correlation between surface free energy of quartz and its wettability by aqueous solutions of nonionic, anionic and cationic surfactants. Journal of colloid and interface science, 340(2), 243-248. https://doi.org/10.1016/j.jcis.2009.08.040
  • Gönül, N. (2000). Süspansiyon ve Emülsiyon Teknolojisi. Ankara Üniversitesi Eczacılık Fakültesi Eczacılık Teknolojisi Bölümü, Ankara, 93.
  • Karaman, M., & Uçar, T. (2016). Enhanced mechanical properties of low-surface energy thin films by simultaneous plasma polymerization of fluorine and epoxy containing polymers. Applied Surface Science, 362, 210-216. https://doi.org/10.1016/j.apsusc.2015.11.254
  • Hiemenz, P.C., (1986). Principles of Colloid And Surface Chemistry, 2nd Ed.; Marcel Dekker Inc., New York.
  • Kapilashrami, A., Eskilsson, K., Bergström, L., & Malmsten, M. (2004). Drying of oil-in-water emulsions on hydrophobic and hydrophilic substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 233(1-3), 155-161. https://doi.org/10.1016/j.colsurfa.2003.11.022
  • Gao, Z., Zhai, X., Liu, F., Zhang, M., Zang, D., & Wang, C. (2015). Fabrication of TiO2/EP super-hydrophobic thin film on filter paper surface. Carbohydrate polymers, 128, 24-31. https://doi.org/10.1016/j.carbpol.2015.04.014
  • Azemar, F., Faÿ, F., Réhel, K., & Linossier, I. (2015). Development of hybrid antifouling paints. Progress in Organic Coatings, 87, 10-19. https://doi.org/10.1016/j.porgcoat.2015.04.007
  • Chrzan, K. L. (2007). Performance of hydrophobic epoxy insulators under industrial pollution.
  • Syakur, A., Berahim, H., & Rochmadi, T. (2012). Hydrophobic contact angle and surface degradation of epoxy resin compound with silicon rubber and silica. Electrical and Electronic Engineering, 2(5), 284-291. http://doi.org/10.5923/j.eee.20120205.07
  • Mehmetalioğlu, C., Olgun, U., Şen, Ş., Şen, U., Akıncı, A., Akcan, E., & Özüyağlı, A. (2017). Nano TiO2 dolgulu polimer esaslı hidrofobik kaplamanın yüzey özelliklerinin incelenmesi. Sakarya University Journal of Science, 21(2), 77-81. https://doi.org/10.16984/saufenbilder.296793
  • Giovannini, G., Lucchesi, S., & Cervelli, S. (1983). Water-repellent substances and aggregate stability in hydrophobic soil. Soil Science, 135(2), 110-113.
  • Tittarelli, F. (2009). Oxygen diffusion through hydrophobic cement-based materials. Cement and Concrete Research, 39(10), 924-928. https://doi.org/10.1016/j.cemconres.2009.06.021
  • Wong, H. S., Barakat, R., Alhilali, A., Saleh, M., & Cheeseman, C. R. (2015). Hydrophobic concrete using waste paper sludge ash. Cement and Concrete Research, 70, 9-20. https://doi.org/10.1016/j.cemconres.2015.01.005
  • Tittarelli, F., & Moriconi, G. (2008). The effect of silane-based hydrophobic admixture on corrosion of reinforcing steel in concrete. Cement and Concrete Research, 38(11), 1354-1357. https://doi.org/10.1016/j.cemconres.2008.06.009
  • Tittarelli, F., & Moriconi, G. (2010). The effect of silane-based hydrophobic admixture on corrosion of galvanized reinforcing steel in concrete. Corrosion Science, 52(9), 2958-2963. https://doi.org/10.1016/j.corsci.2010.05.008
  • Lal, S., Poulikakos, L., Jerjen, I., Vontobel, P., Partl, M. N., Derome, D., & Carmeliet, J. (2017). Wetting and drying in hydrophobic, macroporous asphalt structures. Construction and Building Materials, 152, 82-95. https://doi.org/10.1016/j.conbuildmat.2017.06.145
  • Zakerzadeh, M., Abtahi, S. M., Allafchian, A., & Chamani, M. R. (2018). Examining the effect of different super hydrophobic nanomaterials on asphalt pavements. Construction and Building Materials, 180, 285-290. https://doi.org/10.1016/j.conbuildmat.2018.04.190
  • Gao, Y., Qu, L., He, B., Dai, K., Fang, Z., & Zhu, R. (2018). Study on effectiveness of anti-icing and deicing performance of super-hydrophobic asphalt concrete. Construction and Building Materials, 191, 270-280. https://doi.org/10.1016/j.conbuildmat.2018.10.009
  • Nahvi, A., Sadoughi, M. K., Arabzadeh, A., Sassani, A., Hu, C., Ceylan, H., & Kim, S. (2019). Multi-objective Bayesian optimization of super hydrophobic coatings on asphalt concrete surfaces. Journal of Computational Design and Engineering, 6(4), 693-704. https://doi.org/10.1016/j.jcde.2018.11.005
  • Han, S., Yao, T., & Yang, X. (2019). Preparation and anti-icing properties of a hydrophobic emulsified asphalt coating. Construction and Building Materials, 220, 214-227. https://doi.org/10.1016/j.conbuildmat.2019.06.021
  • Han, S., Yao, T., Han, X., Hongwei, Z., & Yang, X. (2020). Performance evaluation of waterborne epoxy resin modified hydrophobic emulsified asphalt micro-surfacing mixture. Construction and Building Materials, 249, 118835. https://doi.org/10.1016/j.conbuildmat.2020.118835
  • Dalhat, M. A., & Adesina, A. Y. (2020). Utilization of micronized recycled polyethylene waste to improve the hydrophobicity of asphalt surfaces. Construction and Building Materials, 240, 117966. https://doi.org/10.1016/j.conbuildmat.2019.117966
There are 35 citations in total.

Details

Primary Language English
Subjects Transportation Engineering
Journal Section Research Articles
Authors

Sercan Serin 0000-0001-6025-6233

Sümeyye Elif Demirezer 0000-0001-8928-553X

Publication Date December 31, 2021
Submission Date September 24, 2021
Acceptance Date December 24, 2021
Published in Issue Year 2021 Volume: 2 Issue: 2

Cite

APA Serin, S., & Demirezer, S. E. (2021). Investigation of wetting and hydrophobic properties of bitumen modified with different vegetable oils. Journal of Innovative Transportation, 2(2). https://doi.org/10.53635/jit.1000449