Araştırma Makalesi
PDF EndNote BibTex Kaynak Göster

Temperature sensitivity and performance evaluation of asphalt cement incorporating different types of waste polymers

Yıl 2021, Cilt 2, Sayı 2, 0 - 0, 31.12.2021
https://doi.org/10.53635/jit.984159

Öz

There is significant evidence that utilizing polymers improves asphalt cement characteristics, preserve the environment, and increases industrial-economic benefits. Consequently, the use of such modifier in asphalt cements via sustainable technology is strongly encouraged. The major goal of this research is to study the effect of modified asphalt cement with crumb rubber (CR) (10%, 15%, and 20% CR) and recycled polyethylene terephthalate (rPET) (1.5%, and 2.5% rPET) on the physical and rheological characteristics of asphalt cements. Asphalt cement experiments such as softening point, penetration, and rotational viscosity (RV), were performed on both the virgin and modified asphalt cements. The effect of CR and rPET on the temperature sensitivity of the asphalt cement was also evaluated by checking the penetration index (PI), penetration viscosity number (PVN), viscosity-temperature sensitivity (VTS), activation energy flow methods (AE) of all the modified asphalt cements. The rutting index (G*/sin δ) was calculated using Bari and Witczak model. The findings revealed that the addition of CR and rPET in the asphalt cement reduced the temperature sensitivity and enhanced the rheological characteristics of the asphalt cements. Moreover, incorporating the CR and rPET into virgin asphalt cements increased the high temperature performance of all percentage of CR and 2.5% WP modified asphalt. There was a considerable correlation between temperature sensitivity methods; PI, PVN, VTS, and AE. Finally, virgin asphalt modified with CR is better than rPET.

Kaynakça

  • Ameri, M., Reza Seif, M., Abbasi, M., & Khavandi Khiavi, A. (2017). Viscoelastic fatigue resistance of asphalt binders modified with crumb rubber and styrene butadiene polymer. Petroleum Science and Technology, 35(1), 30-36. https://doi.org/10.1080/10916466.2016.1233246
  • Wang, W., Cheng, Y., Tan, G., Liu, Z., & Shi, C. (2018). Laboratory investigation on high-and low-temperature performances of asphalt mastics modified by waste oil shale ash. Journal of Material Cycles and Waste Management, 20(3), 1710-1723. https://doi.org/10.1007/s10163-018-0737-2
  • Barco Carrión, A. J. D., Lo Presti, D., Pouget, S., Airey, G., & Chailleux, E. (2017). Linear viscoelastic properties of high reclaimed asphalt content mixes with biobinders. Road Materials and Pavement Design, 18(sup2), 241-251. https://doi.org/10.1080/14680629.2017.1304253
  • Doll, B., Ozer, H., Rivera-Perez, J. J., Al-Qadi, I. L., & Lambros, J. (2017). Investigation of viscoelastic fracture fields in asphalt mixtures using digital image correlation. International Journal of Fracture, 205(1), 37-56. https://doi.org/10.1007/s10704-017-0180-8
  • Behnood, A., & Gharehveran, M. M. (2019). Morphology, rheology, and physical properties of polymer-modified asphalt binders. European Polymer Journal, 112, 766-791. https://doi.org/10.1016/j.eurpolymj.2018.10.049
  • Singh, B., & Kumar, P. (2021). Investigating the performance of polymer and warm mix modified asphalt binders and mixtures. International Journal of Pavement Engineering, 1-15. https://doi.org/10.1080/10298436.2021.1915491
  • Goli, A., Ziari, H., & Amini, A. (2017). Influence of carbon nanotubes on performance properties and storage stability of SBS modified asphalt binders. Journal of Materials in Civil Engineering, 29(8), 04017070. https://doi.org10.1061/(ASCE)MT.1943-5533.0001910
  • Al-Omari, A., Taamneh, M., & Imam, R. (2021). The effects of adding Nano Clay and Nano Zinc Oxide on asphalt cement rheology. Journal of King Saud University-Engineering Sciences. https://doi.org/10.1016/j.jksues.2021.03.010
  • Habbouche, J., Hajj, E. Y., Sebaaly, P. E., & Piratheepan, M. (2020). A critical review of high polymer-modified asphalt binders and mixtures. International Journal of Pavement Engineering, 21(6), 686-702. https://doi.org/10.1080/10298436.2018.1503273
  • Habbouche, J., Boz, I., Diefenderfer, B. K., Smith, B. C., & Adel, S. H. (2021). State of the Practice for High Polymer-Modified Asphalt Binders and Mixtures. Transportation Research Record, 0361198121995190. https://doi.org/10.1177/0361198121995190
  • Milad, A., Ahmeda, A. G., Taib, A. M., Rahmad, S., Solla, M., & Yusoff, N. I. M. (2020). A review of the feasibility of using crumb rubber derived from end-of-life tire as asphalt binder modifier. Journal of Rubber Research, 1-14. https://doi.org/10.1007/s42464-020-00050-y
  • Shah, P. M., & Mir, M. S. (2020). Application of nanotechnology in pavement engineering: a review. Canadian Journal of Civil Engineering, 47(9), 1037-1045. https://doi.org/10.1139/cjce-2019-0395
  • Badri, R. M., Sutanto, M., & k Alobaidi, M. (2020). Investigating the rheological properties of asphalt binder incorporating different crumb rubber contents based on a response surface methodology. Journal of King Saud University-Engineering Sciences. https://doi.org/10.1016/j.jksues.2020.10.009
  • Abed, Y. H., & Al-Haddad, A. H. A. (2020). Temperature Susceptibility of Modified Asphalt Binders. In IOP Conference Series: Materials Science and Engineering, 671(1), 012121. IOP Publishing. https://doi.org/10.1088/1757-899X/671/1/012121
  • Pouranian, M. R., Imaninasab, R., & Shishehbor, M. (2020). The effect of temperature and stress level on the rutting performance of modified stone matrix asphalt. Road Materials and Pavement Design, 21(5), 1386-1398. https://doi.org/10.1080/14680629.2018.1546221
  • Vamegh, M., & Ameri, M. (2021). Rutting performance of road pavement asphalt binders modified by polymers. Proceedings of the Institution of Civil Engineers-Construction Materials, 174(4), 206-213. https://doi.org/10.1680/jcoma.17.00073
  • Yao, T., Han, S., Men, C., Zhang, J., Luo, J., & Li, Y. (2021). Performance evaluation of asphalt pavement groove-filled with polyurethane-rubber particle elastomer. Construction and Building Materials, 292, 123434. https://doi.org/10.1016/j.conbuildmat.2021.123434
  • Saowapark, W., Jubsilp, C., & Rimdusit, S. (2019). Natural rubber latex-modified asphalts for pavement application: effects of phosphoric acid and sulphur addition. Road Materials and Pavement Design, 20(1), 211-224. https://doi.org/10.1080/14680629.2017.1378117
  • Zhang, J., Yao, Z., Yu, T., Liu, S., & Jiang, H. (2019). Experimental evaluation of crumb rubber and polyethylene integrated modified asphalt mixture upon related properties. Road Materials and Pavement Design,20(6), 1413-1428. https://doi.org/10.1080/14680629.2018.1447505
  • Eltwati, A. S., Hossein, A., & Nasr, D. (2020). Effect of Crumb Rubber Particles on the Properties of Asphalt. In ICACE 2019 , 43-52. Springer, Singapore. https://doi.org/10.1007/978-981-15-1193-6_5
  • Pouranian, M. R., Notani, M. A., Tabesh, M. T., Nazeri, B., & Shishehbor, M. (2020). Rheological and environmental characteristics of crumb rubber asphalt binders containing non-foaming warm mix asphalt additives. Construction and Building Materials, 238, 117707. https://doi.org/10.1016/j.conbuildmat.2019.117707
  • Abdelmagid, A. A., & Feng, C. P. (2019). Laboratory evaluation of the effects of short-term aging on high temperature performance of asphalt binder modified with crumb rubber and rice husk ash. Petroleum Science and Technology, 37(13), 1557-1565. https://doi.org/10.1080/10916466.2019.1590409
  • Huang, J., & Wang, Q. A. (2021). Influence of crumb rubber particle sizes on rutting, low temperature cracking, fracture, and bond strength properties of asphalt binder. Materials and Structures, 54(2), 1-15. https://doi.org/10.1617/s11527-021-01647-4
  • Jamrah, A. A., & Kutay, M. E. (2020). A new rheological approach to evaluating the aged performance of Crumb Rubber Modified binders. International Journal of Pavement Engineering, 1-14. https://doi.org/10.1080/10298436.2020.1830090
  • Mirzaiyan, D., Ameri, M., Amini, A., Sabouri, M., & Norouzi, A. (2019). Evaluation of the performance and temperature susceptibility of gilsonite-and SBS-modified asphalt binders. Construction and Building Materials, 207, 679-692. https://doi.org/10.1016/j.conbuildmat.2019.02.145
  • Ameli, A., Norouzi, N., Khabbaz, E. H., & Babagoli, R. (2020). Influence of anti stripping agents on performance of binders and asphalt mixtures containing Crumb Rubber and Styrene-Butadiene-Rubber. Construction and Building Materials, 261, 119880. https://doi.org/10.1016/j.conbuildmat.2020.119880
  • Ameli, A., Pakshir, A. H., Babagoli, R., Habibpour, A., Norouzi, N., & Davoudinezhad, S. (2021). The effects of gilsonite and crumb rubber on moisture damage resistance of stone matrix asphalt mixtures. Construction and Building Materials, 274, 122052. https://doi.org/10.1016/j.conbuildmat.2020.122052
  • Amini, A., Ziari, H., Saadatjoo, S. A., Hashemifar, N. S., & Goli, A. (2021). Rutting resistance, fatigue properties and temperature susceptibility of nano clay modified asphalt rubber binder. Construction and Building Materials, 267, 120946. https://doi.org/10.1016/j.conbuildmat.2020.120946
  • Abdulrahman, S., Hainin, M. R., Satar, M. K. I. M., Hassan, N. A., & Al Saffar, Z. H. (2020, April). Review on the potentials of natural rubber in bitumen modification. In IOP Conference Series: Earth and Environmental Science , 476(1), 012067. IOP Publishing. https://doi.org/10.1088/1755-1315/476/1/012067
  • Liang, P., Liang, M., Fan, W., Zhang, Y., Qian, C., & Ren, S. (2017). Improving thermo-rheological behavior and compatibility of SBR modified asphalt by addition of polyphosphoric acid (PPA). Construction and Building Materials, 139, 183-192. https://doi.org/10.1016/j.conbuildmat.2017.02.065
  • Liu, G., Liang, Y., Chen, H., Wang, H., Komacka, J., & Gu, X. (2019). Influence of the chemical composition and the morphology of crumb rubbers on the rheological and self-healing properties of bitumen. Construction and Building Materials, 210, 555-563. https://doi.org/10.1016/j.conbuildmat.2019.03.205
  • Mashaan, N. S., Chegenizadeh, A., Nikraz, H., & Rezagholilou, A. (2021). Investigating the engineering properties of asphalt binder modified with waste plastic polymer. Ain Shams Engineering Journal, 12(2), 1569-1574. https://doi.org/10.1016/j.asej.2020.08.035
  • Ahmad, A. F., Razali, A. R., & Razelan, I. S. M. (2017, May). Utilization of polyethylene terephthalate (PET) in asphalt pavement: A review. In IOP Conference Series: Materials Science and Engineering , 203(1), 012004. IOP Publishing. https://doi.org/10.1088/1757-899X/203/1/012004
  • Joohari, I. B., & Giustozzi, F. (2020). Chemical and high-temperature rheological properties of recycled plastics-polymer modified hybrid bitumen. Journal of Cleaner Production, 276, 123064. https://doi.org/10.1016/j.jclepro.2020.123064
  • Bensaada, A., Soudani, K., & Haddadi, S. (2021). Effects of short-term aging on the physical and rheological properties of plastic waste-modified bitumen. Innovative Infrastructure Solutions, 6(3), 1-12. https://doi.org/10.1007/s41062-021-00471-7
  • Bari, J., & Witczak, M. W. (2007). New predictive models for viscosity and complex shear modulus of asphalt binders: for use with mechanistic-empirical pavement design guide. Transportation Research Record, 2001(1), 9-19. https://doi.org/10.3141%2F2001-02
  • ASTM-D36 (1998) Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus), A.W. Drews, Editor. ASTM International: West Conshohocken, PA. p. 50-53. https://doi.org/10.1520/MNL10830M
  • ASTM-D5 (1998) Standard Test Method for Penetration of Bituminous Materials, A.W. Drews, Editor. ASTM International: West Conshohocken, PA. p. 47-49. https://doi.org/10.1520/MNL10829M
  • ASTM-D4402 (2015) Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. in American Society for Testing and Materials. West Conshohocken, PA.
  • Hunter, R. N., Self, A., Read, J., & Hobson, E. (2015). The shell bitumen handbook (p. 789). London, UK:: ICE Publishing.
  • Galooyak, S. S., Dabir, B., Nazarbeygi, A. E., & Moeini, A. (2010). Rheological properties and storage stability of bitumen/SBS/montmorillonite composites. Construction and building materials, 24(3), 300-307. https://doi.org/10.1016/j.conbuildmat.2009.08.032
  • Ziari, H., Mirzababaei, P., & Babagoli, R. (2016). Properties of bituminous mixtures modified with a nano-organosilane additive. Petroleum Science and Technology, 34(4), 386-393. https://doi.org/10.1080/10916466.2015.1136948
  • Roberts, F. L., Kandhal, P. S., Brown, E. R., Lee, D. Y., & Kennedy, T. W. (1991). Hot mix asphalt materials, mixture design and construction.
  • Rasmussen, R. O., Lytton, R. L., & Chang, G. K. (2002). Method to predict temperature susceptibility of an asphalt binder. Journal of materials in civil engineering, 14(3), 246-252. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:3(246)
  • Zhang, D., Birgisson, B., Luo, X., & Onifade, I. (2019). A new short-term aging model for asphalt binders based on rheological activation energy. Materials and Structures, 52(4), 1-22. https://doi.org/10.1617/s11527-019-1364-7.
  • Maze, M. (1996). Viscosity of EVA Polymer-Modified Bitumens: Modelling No. 5170 Section 5. In Euraspahlt & Eurobitume Congress.
  • Leng, Z., Padhan, R. K., & Sreeram, A. (2018). Production of a sustainable paving material through chemical recycling of waste PET into crumb rubber modified asphalt. Journal of cleaner production, 180, 682-688. https://doi.org/10.1016/j.jclepro.2018.01.171
  • Fethiza Ali, B., Soudani, K., & Haddadi, S. (2020). Effect of waste plastic and crumb rubber on the thermal oxidative aging of modified bitumen. Road Materials and Pavement Design, 1-12. https://doi.org/10.1080/14680629.2020.1820893
  • Salomon, D., & Zhai, H. (2004). Asphalt binder flow activation energy and its significance for compaction effort. In Proceedings of 3rd Euroasphalt & Eurobitume Congress (pp. 1754-1762).
  • Salomon, D., & Zhai, H. (2002). Ranking asphalt binders by activation energy for flow. Journal of Applied Asphalt Binder Technology, 2(2), 52-60.

Yıl 2021, Cilt 2, Sayı 2, 0 - 0, 31.12.2021
https://doi.org/10.53635/jit.984159

Öz

Kaynakça

  • Ameri, M., Reza Seif, M., Abbasi, M., & Khavandi Khiavi, A. (2017). Viscoelastic fatigue resistance of asphalt binders modified with crumb rubber and styrene butadiene polymer. Petroleum Science and Technology, 35(1), 30-36. https://doi.org/10.1080/10916466.2016.1233246
  • Wang, W., Cheng, Y., Tan, G., Liu, Z., & Shi, C. (2018). Laboratory investigation on high-and low-temperature performances of asphalt mastics modified by waste oil shale ash. Journal of Material Cycles and Waste Management, 20(3), 1710-1723. https://doi.org/10.1007/s10163-018-0737-2
  • Barco Carrión, A. J. D., Lo Presti, D., Pouget, S., Airey, G., & Chailleux, E. (2017). Linear viscoelastic properties of high reclaimed asphalt content mixes with biobinders. Road Materials and Pavement Design, 18(sup2), 241-251. https://doi.org/10.1080/14680629.2017.1304253
  • Doll, B., Ozer, H., Rivera-Perez, J. J., Al-Qadi, I. L., & Lambros, J. (2017). Investigation of viscoelastic fracture fields in asphalt mixtures using digital image correlation. International Journal of Fracture, 205(1), 37-56. https://doi.org/10.1007/s10704-017-0180-8
  • Behnood, A., & Gharehveran, M. M. (2019). Morphology, rheology, and physical properties of polymer-modified asphalt binders. European Polymer Journal, 112, 766-791. https://doi.org/10.1016/j.eurpolymj.2018.10.049
  • Singh, B., & Kumar, P. (2021). Investigating the performance of polymer and warm mix modified asphalt binders and mixtures. International Journal of Pavement Engineering, 1-15. https://doi.org/10.1080/10298436.2021.1915491
  • Goli, A., Ziari, H., & Amini, A. (2017). Influence of carbon nanotubes on performance properties and storage stability of SBS modified asphalt binders. Journal of Materials in Civil Engineering, 29(8), 04017070. https://doi.org10.1061/(ASCE)MT.1943-5533.0001910
  • Al-Omari, A., Taamneh, M., & Imam, R. (2021). The effects of adding Nano Clay and Nano Zinc Oxide on asphalt cement rheology. Journal of King Saud University-Engineering Sciences. https://doi.org/10.1016/j.jksues.2021.03.010
  • Habbouche, J., Hajj, E. Y., Sebaaly, P. E., & Piratheepan, M. (2020). A critical review of high polymer-modified asphalt binders and mixtures. International Journal of Pavement Engineering, 21(6), 686-702. https://doi.org/10.1080/10298436.2018.1503273
  • Habbouche, J., Boz, I., Diefenderfer, B. K., Smith, B. C., & Adel, S. H. (2021). State of the Practice for High Polymer-Modified Asphalt Binders and Mixtures. Transportation Research Record, 0361198121995190. https://doi.org/10.1177/0361198121995190
  • Milad, A., Ahmeda, A. G., Taib, A. M., Rahmad, S., Solla, M., & Yusoff, N. I. M. (2020). A review of the feasibility of using crumb rubber derived from end-of-life tire as asphalt binder modifier. Journal of Rubber Research, 1-14. https://doi.org/10.1007/s42464-020-00050-y
  • Shah, P. M., & Mir, M. S. (2020). Application of nanotechnology in pavement engineering: a review. Canadian Journal of Civil Engineering, 47(9), 1037-1045. https://doi.org/10.1139/cjce-2019-0395
  • Badri, R. M., Sutanto, M., & k Alobaidi, M. (2020). Investigating the rheological properties of asphalt binder incorporating different crumb rubber contents based on a response surface methodology. Journal of King Saud University-Engineering Sciences. https://doi.org/10.1016/j.jksues.2020.10.009
  • Abed, Y. H., & Al-Haddad, A. H. A. (2020). Temperature Susceptibility of Modified Asphalt Binders. In IOP Conference Series: Materials Science and Engineering, 671(1), 012121. IOP Publishing. https://doi.org/10.1088/1757-899X/671/1/012121
  • Pouranian, M. R., Imaninasab, R., & Shishehbor, M. (2020). The effect of temperature and stress level on the rutting performance of modified stone matrix asphalt. Road Materials and Pavement Design, 21(5), 1386-1398. https://doi.org/10.1080/14680629.2018.1546221
  • Vamegh, M., & Ameri, M. (2021). Rutting performance of road pavement asphalt binders modified by polymers. Proceedings of the Institution of Civil Engineers-Construction Materials, 174(4), 206-213. https://doi.org/10.1680/jcoma.17.00073
  • Yao, T., Han, S., Men, C., Zhang, J., Luo, J., & Li, Y. (2021). Performance evaluation of asphalt pavement groove-filled with polyurethane-rubber particle elastomer. Construction and Building Materials, 292, 123434. https://doi.org/10.1016/j.conbuildmat.2021.123434
  • Saowapark, W., Jubsilp, C., & Rimdusit, S. (2019). Natural rubber latex-modified asphalts for pavement application: effects of phosphoric acid and sulphur addition. Road Materials and Pavement Design, 20(1), 211-224. https://doi.org/10.1080/14680629.2017.1378117
  • Zhang, J., Yao, Z., Yu, T., Liu, S., & Jiang, H. (2019). Experimental evaluation of crumb rubber and polyethylene integrated modified asphalt mixture upon related properties. Road Materials and Pavement Design,20(6), 1413-1428. https://doi.org/10.1080/14680629.2018.1447505
  • Eltwati, A. S., Hossein, A., & Nasr, D. (2020). Effect of Crumb Rubber Particles on the Properties of Asphalt. In ICACE 2019 , 43-52. Springer, Singapore. https://doi.org/10.1007/978-981-15-1193-6_5
  • Pouranian, M. R., Notani, M. A., Tabesh, M. T., Nazeri, B., & Shishehbor, M. (2020). Rheological and environmental characteristics of crumb rubber asphalt binders containing non-foaming warm mix asphalt additives. Construction and Building Materials, 238, 117707. https://doi.org/10.1016/j.conbuildmat.2019.117707
  • Abdelmagid, A. A., & Feng, C. P. (2019). Laboratory evaluation of the effects of short-term aging on high temperature performance of asphalt binder modified with crumb rubber and rice husk ash. Petroleum Science and Technology, 37(13), 1557-1565. https://doi.org/10.1080/10916466.2019.1590409
  • Huang, J., & Wang, Q. A. (2021). Influence of crumb rubber particle sizes on rutting, low temperature cracking, fracture, and bond strength properties of asphalt binder. Materials and Structures, 54(2), 1-15. https://doi.org/10.1617/s11527-021-01647-4
  • Jamrah, A. A., & Kutay, M. E. (2020). A new rheological approach to evaluating the aged performance of Crumb Rubber Modified binders. International Journal of Pavement Engineering, 1-14. https://doi.org/10.1080/10298436.2020.1830090
  • Mirzaiyan, D., Ameri, M., Amini, A., Sabouri, M., & Norouzi, A. (2019). Evaluation of the performance and temperature susceptibility of gilsonite-and SBS-modified asphalt binders. Construction and Building Materials, 207, 679-692. https://doi.org/10.1016/j.conbuildmat.2019.02.145
  • Ameli, A., Norouzi, N., Khabbaz, E. H., & Babagoli, R. (2020). Influence of anti stripping agents on performance of binders and asphalt mixtures containing Crumb Rubber and Styrene-Butadiene-Rubber. Construction and Building Materials, 261, 119880. https://doi.org/10.1016/j.conbuildmat.2020.119880
  • Ameli, A., Pakshir, A. H., Babagoli, R., Habibpour, A., Norouzi, N., & Davoudinezhad, S. (2021). The effects of gilsonite and crumb rubber on moisture damage resistance of stone matrix asphalt mixtures. Construction and Building Materials, 274, 122052. https://doi.org/10.1016/j.conbuildmat.2020.122052
  • Amini, A., Ziari, H., Saadatjoo, S. A., Hashemifar, N. S., & Goli, A. (2021). Rutting resistance, fatigue properties and temperature susceptibility of nano clay modified asphalt rubber binder. Construction and Building Materials, 267, 120946. https://doi.org/10.1016/j.conbuildmat.2020.120946
  • Abdulrahman, S., Hainin, M. R., Satar, M. K. I. M., Hassan, N. A., & Al Saffar, Z. H. (2020, April). Review on the potentials of natural rubber in bitumen modification. In IOP Conference Series: Earth and Environmental Science , 476(1), 012067. IOP Publishing. https://doi.org/10.1088/1755-1315/476/1/012067
  • Liang, P., Liang, M., Fan, W., Zhang, Y., Qian, C., & Ren, S. (2017). Improving thermo-rheological behavior and compatibility of SBR modified asphalt by addition of polyphosphoric acid (PPA). Construction and Building Materials, 139, 183-192. https://doi.org/10.1016/j.conbuildmat.2017.02.065
  • Liu, G., Liang, Y., Chen, H., Wang, H., Komacka, J., & Gu, X. (2019). Influence of the chemical composition and the morphology of crumb rubbers on the rheological and self-healing properties of bitumen. Construction and Building Materials, 210, 555-563. https://doi.org/10.1016/j.conbuildmat.2019.03.205
  • Mashaan, N. S., Chegenizadeh, A., Nikraz, H., & Rezagholilou, A. (2021). Investigating the engineering properties of asphalt binder modified with waste plastic polymer. Ain Shams Engineering Journal, 12(2), 1569-1574. https://doi.org/10.1016/j.asej.2020.08.035
  • Ahmad, A. F., Razali, A. R., & Razelan, I. S. M. (2017, May). Utilization of polyethylene terephthalate (PET) in asphalt pavement: A review. In IOP Conference Series: Materials Science and Engineering , 203(1), 012004. IOP Publishing. https://doi.org/10.1088/1757-899X/203/1/012004
  • Joohari, I. B., & Giustozzi, F. (2020). Chemical and high-temperature rheological properties of recycled plastics-polymer modified hybrid bitumen. Journal of Cleaner Production, 276, 123064. https://doi.org/10.1016/j.jclepro.2020.123064
  • Bensaada, A., Soudani, K., & Haddadi, S. (2021). Effects of short-term aging on the physical and rheological properties of plastic waste-modified bitumen. Innovative Infrastructure Solutions, 6(3), 1-12. https://doi.org/10.1007/s41062-021-00471-7
  • Bari, J., & Witczak, M. W. (2007). New predictive models for viscosity and complex shear modulus of asphalt binders: for use with mechanistic-empirical pavement design guide. Transportation Research Record, 2001(1), 9-19. https://doi.org/10.3141%2F2001-02
  • ASTM-D36 (1998) Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus), A.W. Drews, Editor. ASTM International: West Conshohocken, PA. p. 50-53. https://doi.org/10.1520/MNL10830M
  • ASTM-D5 (1998) Standard Test Method for Penetration of Bituminous Materials, A.W. Drews, Editor. ASTM International: West Conshohocken, PA. p. 47-49. https://doi.org/10.1520/MNL10829M
  • ASTM-D4402 (2015) Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. in American Society for Testing and Materials. West Conshohocken, PA.
  • Hunter, R. N., Self, A., Read, J., & Hobson, E. (2015). The shell bitumen handbook (p. 789). London, UK:: ICE Publishing.
  • Galooyak, S. S., Dabir, B., Nazarbeygi, A. E., & Moeini, A. (2010). Rheological properties and storage stability of bitumen/SBS/montmorillonite composites. Construction and building materials, 24(3), 300-307. https://doi.org/10.1016/j.conbuildmat.2009.08.032
  • Ziari, H., Mirzababaei, P., & Babagoli, R. (2016). Properties of bituminous mixtures modified with a nano-organosilane additive. Petroleum Science and Technology, 34(4), 386-393. https://doi.org/10.1080/10916466.2015.1136948
  • Roberts, F. L., Kandhal, P. S., Brown, E. R., Lee, D. Y., & Kennedy, T. W. (1991). Hot mix asphalt materials, mixture design and construction.
  • Rasmussen, R. O., Lytton, R. L., & Chang, G. K. (2002). Method to predict temperature susceptibility of an asphalt binder. Journal of materials in civil engineering, 14(3), 246-252. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:3(246)
  • Zhang, D., Birgisson, B., Luo, X., & Onifade, I. (2019). A new short-term aging model for asphalt binders based on rheological activation energy. Materials and Structures, 52(4), 1-22. https://doi.org/10.1617/s11527-019-1364-7.
  • Maze, M. (1996). Viscosity of EVA Polymer-Modified Bitumens: Modelling No. 5170 Section 5. In Euraspahlt & Eurobitume Congress.
  • Leng, Z., Padhan, R. K., & Sreeram, A. (2018). Production of a sustainable paving material through chemical recycling of waste PET into crumb rubber modified asphalt. Journal of cleaner production, 180, 682-688. https://doi.org/10.1016/j.jclepro.2018.01.171
  • Fethiza Ali, B., Soudani, K., & Haddadi, S. (2020). Effect of waste plastic and crumb rubber on the thermal oxidative aging of modified bitumen. Road Materials and Pavement Design, 1-12. https://doi.org/10.1080/14680629.2020.1820893
  • Salomon, D., & Zhai, H. (2004). Asphalt binder flow activation energy and its significance for compaction effort. In Proceedings of 3rd Euroasphalt & Eurobitume Congress (pp. 1754-1762).
  • Salomon, D., & Zhai, H. (2002). Ranking asphalt binders by activation energy for flow. Journal of Applied Asphalt Binder Technology, 2(2), 52-60.

Ayrıntılar

Birincil Dil İngilizce
Konular Taşınım Bilimi ve Teknolojisi
Bölüm Research Articles
Yazarlar

Mahmoud ENIEB> (Sorumlu Yazar)
Faculty of Engineering, Assiut University, Egypt
0000-0001-5509-0849
Egypt


Ahmed ELTWATİ>
Bright Star University
0000-0002-9039-7544
Libya


Mohammed Abbas AL-JUMAİLİ>
University of Kufa
0000-0002-7434-3853
Iraq

Yayımlanma Tarihi 31 Aralık 2021
Başvuru Tarihi 18 Ağustos 2021
Kabul Tarihi 22 Aralık 2021
Yayınlandığı Sayı Yıl 2021, Cilt 2, Sayı 2

Kaynak Göster

Bibtex @araştırma makalesi { jit984159, journal = {Journal of Innovative Transportation}, eissn = {2717-8889}, address = {Suleyman Demirel University, Engineering Faculty, Civil Engineering Department, 32260, Cunur, Isparta}, publisher = {Süleyman Demirel Üniversitesi}, year = {2021}, volume = {2}, number = {2}, pages = {0 - 0}, doi = {10.53635/jit.984159}, title = {Temperature sensitivity and performance evaluation of asphalt cement incorporating different types of waste polymers}, key = {cite}, author = {Enıeb, Mahmoud and Eltwati, Ahmed and Al-jumaili, Mohammed Abbas} }
APA Enıeb, M. , Eltwati, A. & Al-jumaili, M. A. (2021). Temperature sensitivity and performance evaluation of asphalt cement incorporating different types of waste polymers . Journal of Innovative Transportation , 2 (2) , 0-0 . DOI: 10.53635/jit.984159
MLA Enıeb, M. , Eltwati, A. , Al-jumaili, M. A. "Temperature sensitivity and performance evaluation of asphalt cement incorporating different types of waste polymers" . Journal of Innovative Transportation 2 (2021 ): 0-0 <https://dergipark.org.tr/tr/pub/jit/issue/66542/984159>
Chicago Enıeb, M. , Eltwati, A. , Al-jumaili, M. A. "Temperature sensitivity and performance evaluation of asphalt cement incorporating different types of waste polymers". Journal of Innovative Transportation 2 (2021 ): 0-0
RIS TY - JOUR T1 - Temperature sensitivity and performance evaluation of asphalt cement incorporating different types of waste polymers AU - Mahmoud Enıeb , Ahmed Eltwati , Mohammed Abbas Al-jumaili Y1 - 2021 PY - 2021 N1 - doi: 10.53635/jit.984159 DO - 10.53635/jit.984159 T2 - Journal of Innovative Transportation JF - Journal JO - JOR SP - 0 EP - 0 VL - 2 IS - 2 SN - -2717-8889 M3 - doi: 10.53635/jit.984159 UR - https://doi.org/10.53635/jit.984159 Y2 - 2021 ER -
EndNote %0 Journal of Innovative Transportation Temperature sensitivity and performance evaluation of asphalt cement incorporating different types of waste polymers %A Mahmoud Enıeb , Ahmed Eltwati , Mohammed Abbas Al-jumaili %T Temperature sensitivity and performance evaluation of asphalt cement incorporating different types of waste polymers %D 2021 %J Journal of Innovative Transportation %P -2717-8889 %V 2 %N 2 %R doi: 10.53635/jit.984159 %U 10.53635/jit.984159
ISNAD Enıeb, Mahmoud , Eltwati, Ahmed , Al-jumaili, Mohammed Abbas . "Temperature sensitivity and performance evaluation of asphalt cement incorporating different types of waste polymers". Journal of Innovative Transportation 2 / 2 (Aralık 2021): 0-0 . https://doi.org/10.53635/jit.984159
AMA Enıeb M. , Eltwati A. , Al-jumaili M. A. Temperature sensitivity and performance evaluation of asphalt cement incorporating different types of waste polymers. Jinnovtrans. 2021; 2(2): 0-0.
Vancouver Enıeb M. , Eltwati A. , Al-jumaili M. A. Temperature sensitivity and performance evaluation of asphalt cement incorporating different types of waste polymers. Journal of Innovative Transportation. 2021; 2(2): 0-0.
IEEE M. Enıeb , A. Eltwati ve M. A. Al-jumaili , "Temperature sensitivity and performance evaluation of asphalt cement incorporating different types of waste polymers", Journal of Innovative Transportation, c. 2, sayı. 2, ss. 0-0, Ara. 2021, doi:10.53635/jit.984159