Research Article
BibTex RIS Cite
Year 2025, Volume: 6 Issue: 1, 1 - 23
https://doi.org/10.53635/jit.1657504

Abstract

References

  • Pinto, M. I. M. (2003). Applications of geosynthetics for soil reinforcement. Proceedings of the Institution of Civil Engineers-Ground Improvement, 7(2), 61-72. https://doi.org/10.1680/grim.2003.7.2.61
  • Yang, X., & Han, J. (2013). Analytical model for resilient modulus and permanent deformation of geosynthetic-reinforced unbound granular material. Journal of Geotechnical and Geoenvironmental Engineering, 139(9), 1443-1453. https://doi.org/10.1061/(asce)gt.1943-5606.0000879
  • Chen, Q., Hanandeh, S., Abu-Farsakh, M., & Mohammad, L. (2018). Performance evaluation of full-scale geosynthetic reinforced flexible pavement. Geosynthetics International, 25(1), 26-36. https://doi.org/10.1680/jgein.17.00031
  • Sudarsanan, N., Arulrajah, A., Karpurapu, R., & Amrithalingam, V. (2019). Digital image correlation technique for measurement of surface strains in reinforced asphalt concrete beams under fatigue loading. Journal of Materials in Civil Engineering, 31(8), 04019135. https://doi.org/10.1061/(asce)mt.1943-5533.0002743
  • Saad, B., Mitri, H., & Poorooshasb, H. (2006). 3D FE analysis of flexible pavement with geosynthetic reinforcement. Journal of transportation Engineering, 132(5), 402-415. https://doi.org/10.1061/(asce)0733-947x(2006)132:5(402)
  • Perkins, S. W., & Ismeik, M. (1997). A synthesis and evaluation of geosynthetic-reinforced base layers in flexible pavements-part II. Geosynthetics International, 4(6), 605-621. https://doi.org/10.1680/gein.4.0107
  • Abu-Farsakh, M., Hanandeh, S., Mohammad, L., & Chen, Q. (2016). Performance of geosynthetic reinforced/stabilized paved roads built over soft soil under cyclic plate loads. Geotextiles and Geomembranes, 44(6), 845-853. https://doi.org/10.1016/j.geotexmem.2016.06.009
  • Sobhan, K., & Mashnad, M. (2001). Roller-compacted fiber concrete pavement foundation with recycled aggregate and waste plastics. Transportation research record, 1775(1), 53-63. https://doi.org/10.3141/1775-08
  • Divakar, M., Gottumukkala, B., Swarna, S. T., Prasad, P. S., & Arunkumar, G. (2024). Performance evaluation of geosynthetic reinforced marginal material as base layer over weak subgrade. International Journal of Pavement Engineering, 25(1), 2318605. https://doi.org/10.1080/10298436.2024.2318605
  • Harianto, T., Djamaluddin, A. R., & Arsyad, A. (2024). The Performance of Geosynthetic Reinforcement Road Pavement Over Expansive Soil Subgrade. Civil Engineering Journal, 10(12), 4117-4131. https://doi.org/10.28991/cej-2024-010-12-020
  • Panigrahi, B., & Pradhan, P. K. (2019). Improvement of bearing capacity of soil by using natural geotextile. International Journal of Geo-Engineering, 10, 1-12. https://doi.org/10.1186/s40703-019-0105-7
  • Han, J., & Guo, J. (2015). Geosynthetic-stabilized vegetated earth surfaces for environmental sustainability in civil engineering. In Innovative Materials and Design for Sustainable Transportation Infrastructure 2015, 276-285. https://doi.org/10.1061/9780784479278.026
  • Han, J., Thakur, J. K., Corey, R., Christopher, B. R., Khatri, D., & Acharya, B. (2012). Assessment of QC/QA Technologies for Evaluating Properties and Performance of Geosynthetics in Roadway Systems. GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, 1350-1359. https://doi.org/10.1061/9780784412121.139
  • Vinod, P., & Minu, M. (2010). Use of coir geotextiles in unpaved road construction. Geosynthetics International, 17(4), 220-227. https://doi.org/10.1680/gein.2010.17.4.220
  • Hufenus, R., Rueegger, R., Banjac, R., Mayor, P., Springman, S. M., & Brönnimann, R. (2006). Full-scale field tests on geosynthetic reinforced unpaved roads on soft subgrade. Geotextiles and geomembranes, 24(1), 21-37. https://doi.org/10.1016/j.geotexmem.2005.06.002
  • Adhikari, S., Khattak, M. J., & Adhikari, B. (2020). Mechanical characteristics of Soil-RAP-Geopolymer mixtures for road base and subbase layers. International Journal of Pavement Engineering, 21(4), 483-496. https://doi.org/10.1080/10298436.2018.1492131
  • Mohammadinia, A., Arulrajah, A., Sanjayan, J., Disfani, M. M., Win Bo, M., & Darmawan, S. (2016). Stabilization of demolition materials for pavement base/subbase applications using fly ash and slag geopolymers. Journal of Materials in Civil Engineering, 28(7), 04016033. https://doi.org/10.1061/(asce)mt.1943-5533.0001526
  • Sureshvel, V., Suchithra, S., & Ponmohan, K. B. (2020). Shear behavior of concrete beam reinforced with carbon coated steel fiber. International Journal of Recent Technology and Engineering, 8(6), 242467388. https://doi.org/10.35940/ijrte.f8228.038620
  • Hoyos, L. R., Puppala, A. J., & Ordonez, C. A. (2011). Characterization of cement-fiber-treated reclaimed asphalt pavement aggregates: preliminary investigation. Journal of Materials in Civil Engineering, 23(7), 977-989. https://doi.org/10.1061/(asce)mt.1943-5533.0000267
  • Akram, H., Hozayen, H. A., Abdelfatah, A., & Khodary, F. (2024). Fiber Showdown: A Comparative Analysis of Glass vs. Polypropylene Fibers in Hot-Mix Asphalt Fracture Resistance. Buildings, 14(9), 2732. https://doi.org/10.3390/buildings14092732
  • Slebi-Acevedo, C. J., Lastra-González, P., Pascual-Muñoz, P., & Castro-Fresno, D. (2019). Mechanical performance of fibers in hot mix asphalt: A review. Construction and Building Materials, 200, 756-769. https://doi.org/10.1016/j.conbuildmat.2018.12.171
  • George, A. M., Banerjee, A., Puppala, A. J., & Saladhi, M. (2021). Performance evaluation of geocell-reinforced reclaimed asphalt pavement (RAP) bases in flexible pavements. International Journal of Pavement Engineering, 22(2), 181-191. https://doi.org/10.1080/10298436.2019.1587437
  • Mashaan, N. S., Chegenizadeh, A., & Nikraz, H. (2022). Evaluation of the performance of two Australian waste-plastic-modified hot mix asphalts. Recycling, 7(2), 16. https://doi.org/10.3390/recycling7020016
  • Abdulruhman Saleh, H., & Musbah Al Allam, A. (2019). Evaluation of the Mechanical Properties of Asphalt Mixture Modified with RPET. Univers. J. Eng. Sci, 7, 27-31. https://doi.org/10.13189/ujes.2019.070201
  • Asim, M. H. W., Thamer, A. A., & Kadhim, Y. N. (2022). Using nanoclay hydrophilic bentonite as a filler to enhance the mechanical properties of asphalt. Journal of Applied Engineering Science, 20(1), 300-304. https://doi.org/10.5937/jaes0-35111
  • Ling, H. I., & Liu, Z. (2001). Performance of geosynthetic-reinforced asphalt pavements. Journal of Geotechnical and Geoenvironmental Engineering, 127(2), 177-184. https://doi.org/10.1061/(asce)1090-0241(2001)127:2(177)
  • Palmeira, E. M., & Andrade, H. K. P. A. (2010). Protection of buried pipes against accidental damage using geosynthetics. Geosynthetics International, 17(4), 228-241. https://doi.org/10.1680/gein.2010.17.4.228
  • Han, J., Pokharel, S. K., Yang, X., Manandhar, C., Leshchinsky, D., Halahmi, I., & Parsons, R. L. (2011). Performance of geocell-reinforced RAP bases over weak subgrade under full-scale moving wheel loads. Journal of Materials in Civil Engineering, 23(11), 1525-1534. https://doi.org/10.1061/(asce)mt.1943-5533.0000286
  • Perkins, S. W., & Cortez, E. R. (2005). Evaluation of base-reinforced pavements using a heavy vehicle simulator. Geosynthetics International, 12(2), 86-98. https://doi.org/10.1680/gein.2005.12.2.86
  • Palmeira, E. M., & Antunes, L. G. (2010). Large scale tests on geosynthetic reinforced unpaved roads subjected to surface maintenance. Geotextiles and Geomembranes, 28(6), 547-558. https://doi.org/10.1016/j.geotexmem.2010.03.002
  • Kazemian, S., Huat, B. B., Arun Prasad, A. P., & Barghchi, M. (2010). A review of stabilization of soft soils by injection of chemical grouting. 4(12), 5862-5868.
  • Chang, I., Im, J., & Cho, G. C. (2016). Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability, 8(3), 251. https://doi.org/10.3390/su8030251
  • Shubber, K. H., & Saad, A. A. (2020). Subgrade stabilization strategies effect on pavement thickness according to AASHTO pavement design method. In IOP Conference Series: Materials Science and Engineering 737(1), 012145. https://doi.org/10.1088/1757-899x/737/1/012145
  • Sitharam, T. G., Parthasarathy, C. R., & Kolathayar, S. (Eds.). (2021). Ground improvement techniques: Select Proceedings of 7th ICRAGEE 2020. Springer Singapore. https://doi.org/10.1007/978-981-15-9988-0
  • Afrin, H. (2017). A review on different types soil stabilization techniques. International Journal of Transportation Engineering and Technology, 3(2), 19-24. https://doi.org/10.11648/j.ijtet.20170302.12
  • Jit, C. E. L., Nujid, M., Idrus, J., Tholibon, D. A., & Bawadi, N. F. (2021). Effectiveness of different admixtures on Atterberg limit and compaction characteristics of stabilized soil. In IOP Conference Series: Earth and Environmental Science 920(1), 012025. https://doi.org/10.1088/1755-1315/920/1/012025
  • Chang, I., Lee, M., Tran, A. T. P., Lee, S., Kwon, Y. M., Im, J., & Cho, G. C. (2020). Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transportation Geotechnics, 24, 100385. https://doi.org/10.1016/j.trgeo.2020.100385
  • Tafreshi, S. M., Khalaj, O., & Dawson, A. R. (2014). Repeated loading of soil containing granulated rubber and multiple geocell layers. Geotextiles and Geomembranes, 42(1), 25-38. https://doi.org/10.1016/j.geotexmem.2013.12.003
  • Ateş, A. (2013). The Effect of Polymer‐Cement Stabilization on the Unconfined Compressive Strength of Liquefiable Soils. International Journal of Polymer Science, 2013(1), 356214. https://doi.org/10.1155/2013/356214
  • Jalal, F. E., Xu, Y., Jamhiri, B., & Memon, S. A. (2020). On the Recent Trends in Expansive Soil Stabilization Using Calcium‐Based Stabilizer Materials (CSMs): A Comprehensive Review. Advances in Materials Science and Engineering, 2020(1), 1510969. https://doi.org/10.1155/2020/1510969
  • Subaida, E. A., Chandrakaran, S., & Sankar, N. (2009). Laboratory performance of unpaved roads reinforced with woven coir geotextiles. Geotextiles and geomembranes, 27(3), 204-210. https://doi.org/10.1016/j.geotexmem.2008.11.009
  • Edil, T. B., Benson, C. H., Bin-Shafique, M., Tanyu, B. F., Kim, W. H., & Senol, A. (2002). Field evaluation of construction alternatives for roadways over soft subgrade. Transportation Research Record, 1786(1), 36-48. https://doi.org/10.3141/1786-05
  • Minchala, D., Gottumukkala, B., Prasad, P. S., & Swarna, S. T. (2024). Performance evaluation of marginal materials in geosynthetic reinforced base layers. Road Materials and Pavement Design, 1-14. https://doi.org/10.1080/14680629.2024.2373228
  • Arulrajah, A., Ali, M. M. Y., Disfani, M. M., & Horpibulsuk, S. (2014). Recycled-glass blends in pavement base/subbase applications: laboratory and field evaluation. Journal of materials in Civil Engineering, 26(7), 04014025. https://doi.org/10.1061/(asce)mt.1943-5533.0000966
  • Tayh, S., & Khalif, D. Y. K. (2023). Investigation of the Mechanical Performance of Stone Mastic Asphalt Mixtures Modified by Recycled Waste Polymers. Journal of Engineering and Sustainable Development, 27(4), 429-447. https://doi.org/10.31272/jeasd.27.4.2
  • Al-Mousawi, E. J., Al-Rubaee, R. H., & Shubber, A. A. (2021). Evaluation the Physical Properties and Marshall Stability for Asphalt Modified with Waste Polypropylene and Nanosilica Powder. In IOP Conference Series: Materials Science and Engineering 1090(1), 012007. https://doi.org/10.1088/1757-899x/1090/1/012007
  • Cheng, P., Li, Y., & Zhang, Z. (2020). Effect of phenolic resin on the rheological and morphological characteristics of styrene-butadiene rubber-modified asphalt. Materials, 13(24), 5836. https://doi.org/10.3390/ma13245836
  • Kashyap, G., Bathla, A., & Malik, A. N. (2019). Determine the Marshall Stability and Flow Parameters of Semi Dense Bituminous Concrete Mixed with Waste Plastic. International Journal for Research in Applied Science and Engineering Technology, 7(8), 649-653. https://doi.org/10.22214/ijraset.2019.8094
  • Hossiney, N., Sepuri, H. K., Mohan, M. K., Chandra K, S., Lakshmish Kumar, S., & HK, T. (2020). Geopolymer concrete paving blocks made with Recycled Asphalt Pavement (RAP) aggregates towards sustainable urban mobility development. Cogent Engineering, 7(1), 1824572. https://doi.org/10.1080/23311916.2020.1824572
  • Maharaj, C., Maharaj, R., & Maynard, J. (2015). The effect of polyethylene terephthalate particle size and concentration on the properties of asphalt and bitumen as an additive. Progress in Rubber Plastics and Recycling Technology, 31(1), 1-23. https://doi.org/10.1177/147776061503100101
  • Jayakody, S., Gallage, C., & Ramanujam, J. (2019). Performance characteristics of recycled concrete aggregate as an unbound pavement material. Heliyon, 5(9). https://doi.org/10.1016/j.heliyon.2019.e02494
  • AlShareedah, O., & Nassiri, S. (2021). Pervious concrete mixture optimization, physical, and mechanical properties and pavement design: A review. Journal of Cleaner Production, 288, 125095. https://doi.org/10.1016/j.jclepro.2020.125095
  • AlShareedah, O., Nassiri, S., Chen, Z., Englund, K., Li, H., & Fakron, O. (2019). Field performance evaluation of pervious concrete pavement reinforced with novel discrete reinforcement. Case Studies in Construction Materials, 10, e00231. https://doi.org/10.1016/j.cscm.2019.e00231
  • Shakrani, S. A., Ayob, A., & Rahim, M. A. A. (2017). A review of nanoclay applications in the pervious concrete pavement. In AIP Conference Proceedings 1885(1). https://doi.org/10.1063/1.5002243
  • Verma, P., Shukla, S., & Pal, P. (2025). Potential Application of Nano-silica in Concrete Pavement: A Bibliographic Analysis and Comprehensive Review. Materials Today Sustainability, 101079. https://doi.org/10.1016/j.mtsust.2025.101079
  • Papatzani, S., Grammatikos, S., & Paine, K. (2019). Permeable nanomontmorillonite and fibre reinforced cementitious binders. Materials, 12(19), 3245. https://doi.org/10.3390/ma12193245
  • Perkins, S. W. (1999). Mechanical response of geosynthetic-reinforced flexible pavements. Geosynthetics international, 6(5), 347-382. https://doi.org/10.1680/gein.6.0157
  • Afzal, G., & Rasool, T. (2024). Sustainable pervious concrete incorporated with graphene oxide: a comprehensive analysis of mechanical, infiltration and microstructure performance. International Journal of Pavement Engineering, 25(1), 2335309. https://doi.org/10.1080/10298436.2024.2335309
  • Adnan, E., Al Waily, M. J., & Jawad, Z. F. (2023). A Review Study on the Effect of Nanomaterials and Local Materials on Soil Geotechnical Properties. In E3S Web of Conferences 427, 01010. https://doi.org/10.1051/e3sconf/202342701010
  • Shaffie, E., Hanif, W. W., Arshad, A. K., & Hashim, W. (2017). Rutting resistance of asphalt mixture with cup lumps modified binder. In IOP Conference Series: Materials Science and Engineering 271(1), 012056. https://doi.org/10.1088/1757-899x/271/1/012056
  • Landi, D., Marconi, M., Bocci, E., & Germani, M. (2020). Comparative life cycle assessment of standard, cellulose-reinforced and end of life tires fiber-reinforced hot mix asphalt mixtures. Journal of Cleaner Production, 248, 119295. https://doi.org/10.1016/j.jclepro.2019.119295
  • Zhang, K., Lim, J., Nassiri, S., Englund, K., & Li, H. (2019). Reuse of carbon fiber composite materials in porous hot mix asphalt to enhance strength and durability. Case Studies in Construction Materials, 11, e00260. https://doi.org/10.1016/j.cscm.2019.e00260
  • Hayat, U., Rahim, A., Khan, A. H., & Rehman, Z. U. (2020). Use of plastic wastes and reclaimed asphalt for sustainable development. The Baltic Journal of road and bridge engineering, 15(2), 182-196. https://doi.org/10.7250/bjrbe.2020-15.479
  • Chen, J. S., Sun, Y. C., Liao, M. C., Huang, C. C., & Tsou, K. W. (2013). Evaluation of permeable friction course mixes with various binders and additives. Journal of materials in civil engineering, 25(5), 573-579. https://doi.org/10.1061/(asce)mt.1943-5533.0000631
  • Ayash, A. A., Raouf, R. M., & Eweed, K. M. (2020). Mechanical Characteristics of Asphalt Mixture Modified by Polypropylene Waste. In Defect and Diffusion Forum 398, 90-97. https://doi.org/10.4028/www.scientific.net/ddf.398.90
  • Isa, N., Olowosulu, A., & Joel, M. (2018). Mechanistic evaluation of the effect of calcium carbide waste on properties of asphalt mixes. Nigerian Journal of Technological Development, 15(1), 20-25. https://doi.org/10.4314/njtd.v15i1.4
  • Wang, Z., Yang, G., Wang, X., Liang, X., Liu, M., & Zhang, H. (2024). Study on Low Temperature Cracking Resistance of Carbon Fiber Geogrid Reinforced Asphalt Pavement Surface Combined Body. Polymers, 16(15), 2168. https://doi.org/10.3390/polym16152168
  • Lyu, Z., Shen, A., & Meng, W. (2021). Properties, mechanism, and optimization of superabsorbent polymers and basalt fibers modified cementitious composite. Construction and Building Materials, 276, 122212. https://doi.org/10.1016/j.conbuildmat.2020.122212
  • Fattah, M. Y., Abdulkhabeer, W., & Hilal, M. M. (2021). Characteristics of asphalt binder and mixture modified with waste polypropylene. Engineering and Technology Journal, 39(8), 1224-1230. https://doi.org/10.30684/etj.v39i8.1716
  • Oreto, C., Russo, F., Veropalumbo, R., Viscione, N., Biancardo, S. A., & Dell’Acqua, G. (2021). Life cycle assessment of sustainable asphalt pavement solutions involving recycled aggregates and polymers. Materials, 14(14), 3867. https://doi.org/10.3390/ma14143867
  • Copeland, A. (2011). Reclaimed asphalt pavement in asphalt mixtures: State of the practice (No. FHWA-HRT-11-021). United States. Federal Highway Administration. Office of Research, Development, and Technology. https://rosap.ntl.bts.gov/view/dot/40918
  • Milad, A., Taib, A. M., Ahmeda, A. G., Solla, M., & Yusoff, N. I. M. (2020). A review of the use of reclaimed asphalt pavement for road paving applications. Jurnal Teknologi (Sciences & Engineering), 82(3). https://doi.org/10.11113/jt.v82.14320
  • Enieb, M., Al-Jumaili, M. A. H., Al-Jameel, H. A. E., & Eltwati, A. S. (2021). Sustainability of using reclaimed asphalt pavement: based-reviewed evidence. In Journal of Physics: Conference Series 1973(1), 012242. https://doi.org/10.1088/1742-6596/1973/1/012242
  • Kumar P. G., Madhunika, N., Sindhura, Y., Dwarakamai, S., Praneetha, A., Sravani, T. H., & Sridevi, P. (2020). An Experimental Investigation on Soil Stabilization using Terrazyme. In IOP Conference Series. Materials Science and Engineering 1006(1). https://doi.org/10.1088/1757-899x/1006/1/012023
  • Al-Shujairi, A. O., Al-Taie, A. J., & Al-Mosawe, H. M. (2021). Review on applications of RAP in civil engineering. In IOP Conference Series: Materials Science and Engineering 1105(1), 012092. https://doi.org/10.1088/1757-899x/1105/1/012092
  • Antunes, V., Neves, J., & Freire, A. C. (2021). Performance assessment of reclaimed asphalt pavement (RAP) in road surface mixtures. Recycling, 6(2), 32. https://doi.org/10.3390/recycling6020032
  • Widayanti, A., Ria, A. S., Ekaputri, J. J., & Suprayitno, H. (2018). Characterization of reclaimed asphalt pavement (RAP) as a road pavement material (National Road Waru, Sidoarjo). In MATEC Web of Conferences 181, 05001. https://doi.org/10.1051/matecconf/201818105001
  • Ma, X., Wang, J., & Xu, Y. (2022). Investigation on the effects of RAP proportions on the pavement performance of recycled asphalt mixtures. Frontiers in Materials, 8, 842809. https://doi.org/10.3389/fmats.2021.842809
  • Thompson, D. F., & Walker, C. K. (2015). A descriptive and historical review of bibliometrics with applications to medical sciences. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 35(6), 551-559. https://doi.org/10.1002/phar.1586
  • de Oliveira, O. J., da Silva, F. F., Juliani, F., Barbosa, L. C. F. M., & Nunhes, T. V. (2019). Bibliometric method for mapping the state-of-the-art and identifying research gaps and trends in literature: An essential instrument to support the development of scientific projects. In Scientometrics recent advances. IntechOpen. https://doi.org/10.5772/intechopen.85856
  • Wei, C., Zhang, M., Li, G., Jiang, Y., & Ren, J. (2025). Evaluation and application of basalt fiber reinforcement mesh for improving pavement interlayer bonding property via a new approach of interlayer shear test of composite plate. Construction and Building Materials, 469, 140518. https://doi.org/10.1016/j.conbuildmat.2025.140518
  • Fernández-González, J. M., Diaz-Lopez, C., Martin-Pascual, J., & Zamorano, M. (2020). Recycling organic fraction of municipal solid waste: Systematic literature review and bibliometric analysis of research trends. Sustainability, 12(11), 4798. https://doi.org/10.3390/su12114798
  • Bonicelli, A., Preciado, J., Rueda, A., & Duarte, A. (2019). Semi-flexible material: A solution for high-performance pavement infrastructures. In IOP Conference Series: Materials Science and Engineering 471(3), 032062. https://doi.org/10.1088/1757-899x/471/3/032062
  • Alreahi, M., Bujdoso, Z., Dávid, L. D., & Gyenge, B. (2023). Green supply chain management in hotel industry: A systematic review. Sustainability, 15(7), 5622. https://doi.org/10.3390/su15075622
  • Herrera-Franco, G., Montalvan-Burbano, N., Carrion-Mero, P., Jaya-Montalvo, M., & Gurumendi-Noriega, M. (2021). Worldwide research on geoparks through bibliometric analysis. Sustainability, 13(3), 1175. https://doi.org/10.3390/su13031175
  • Srisawad, S., & Lertsittiphan, K. (2021). Bibliometric analysis of references selection that influence citations among articles of thai multidisciplinary journals. Journal of Scientometric Research, 10(3), 288-296. https://doi.org/10.5530/jscires.10.3.45
  • Xie, L., Chen, Z., Wang, H., Zheng, C., & Jiang, J. (2020). Bibliometric and visualized analysis of scientific publications on atlantoaxial spine surgery based on Web of Science and VOSviewer. World neurosurgery, 137, 435-442. https://doi.org/10.1016/j.wneu.2020.01.171
  • Yan, L., & Zhiping, W. (2023). Mapping the literature on academic publishing: A bibliometric analysis on WOS. Sage Open, 13(1), 21582440231158562. https://doi.org/10.1177/21582440231158562
  • Ellegaard, O. (2018). The application of bibliometric analysis: disciplinary and user aspects. Scientometrics, 116(1), 181-202. https://doi.org/10.1007/s11192-018-2765-z
  • Mejia, C., Wu, M., Zhang, Y., & Kajikawa, Y. (2021). Exploring topics in bibliometric research through citation networks and semantic analysis. Frontiers in Research Metrics and Analytics, 6, 742311. https://doi.org/10.3389/frma.2021.742311
  • Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of business research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070
  • Ho, H. T. N., & Luong, H. T. (2022). Research trends in cybercrime victimization during 2010–2020: a bibliometric analysis. SN Social Sciences, 2(1), 4. https://doi.org/10.1007/s43545-021-00305-4
  • Shatu, F., Aston, L., Patel, L. B., & Kamruzzaman, M. (2022). Transit oriented development: A bibliometric analysis of research. Advances in transport policy and planning, 9, 231-275. https://doi.org/10.1016/bs.atpp.2021.06.001
  • Ghani, N. A., Hamid, S., Hashem, I. A. T., & Ahmed, E. (2019). Social media big data analytics: A survey. Computers in Human behavior, 101, 417-428. https://doi.org/10.1016/j.chb.2018.08.039
  • Alsmadi, A. A., Alrawashdeh, N., Al-Dweik, A. A. F., & Al-Assaf, M. (2022). Cryptocurrencies: A bibliometric analysis. International Journal of Data & Network Science, 6(3), 619. https://doi.org/10.5267/j.ijdns.2022.4.011
  • Al Husaeni, D. F., & Nandiyanto, A. B. D. (2022). Bibliometric using Vosviewer with Publish or Perish (using google scholar data): From step-by-step processing for users to the practical examples in the analysis of digital learning articles in pre and post Covid-19 pandemic. ASEAN Journal of Science and Engineering, 2(1), 19-46. https://doi.org/10.17509/ajse.v2i1.37368
  • Yu, N., Wang, R., Liu, B., & Zhang, L. (2022). Bibliometric and visual analysis on metabolomics in coronary artery disease research. Frontiers in cardiovascular medicine, 9, 804463. https://doi.org/10.3389/fcvm.2022.804463
  • Pan, X., Shao, T., Zheng, X., Zhang, Y., Ma, X., & Zhang, Q. (2023). Energy and sustainable development nexus: A review. Energy Strategy Reviews, 47, 101078. https://doi.org/10.1016/j.esr.2023.101078
  • Deng, H., Huang, Z., Li, Z., Cao, L., He, Y., Sun, N., ... & Wu, J. (2023). Systematic bibliometric and visualized analysis of research hotspots and trends in attention-deficit hyperactivity disorder neuroimaging. Frontiers in Neuroscience, 17, 1098526. https://doi.org/10.3389/fnins.2023.1098526
  • Nowell, L. S., Norris, J. M., White, D. E., & Moules, N. J. (2017). Thematic analysis: Striving to meet the trustworthiness criteria. International journal of qualitative methods, 16(1), 1609406917733847. https://doi.org/10.1177/1609406917733847
  • Erdös, T., & Ramseyer, F. T. (2021). Change process in coaching: Interplay of nonverbal synchrony, working alliance, self-regulation, and goal attainment. Frontiers in Psychology, 12, 580351. https://doi.org/10.3389/fpsyg.2021.580351
  • Liu, R., Ran, W., & Liu, S. (2023). Blockchain technology applied to supply chain management: a systems’ analysis. Mobile Information Systems, 2023(1), 6046503. https://doi.org/10.1155/2023/6046503
  • Zhao, M., Zhang, H., & Li, Z. (2022). A bibliometric and visual analysis of nanocomposite hydrogels based on VOSviewer from 2010 to 2022. Frontiers in Bioengineering and Biotechnology, 10, 914253. https://doi.org/10.3389/fbioe.2022.914253
  • Bratt, S. (2018). Digital library keyword analysis for visualization education research: Issues and recommendations. Journal of Applied Research in Higher Education, 10(4), 595-611. https://doi.org/10.1108/jarhe-03-2018-0047
  • Liu, M., Lee, J., Kang, J., & Liu, S. (2016). What we can learn from the data: A multiple-case study examining behavior patterns by students with different characteristics in using a serious game. Technology, Knowledge and Learning, 21, 33-57. https://doi.org/10.1007/s10758-015-9263-7
  • Rafols, I., Porter, A. L., & Leydesdorff, L. (2010). Science overlay maps: A new tool for research policy and library management. Journal of the American Society for information Science and Technology, 61(9), 1871-1887. https://doi.org/10.1002/asi.21368

A bibliometric analysis of pavement engineering research: Focus on composite and geosynthetic materials

Year 2025, Volume: 6 Issue: 1, 1 - 23
https://doi.org/10.53635/jit.1657504

Abstract

This study presents a bibliometric analysis of the literature concerning the reinforcement of subgrade and base layers in pavements using composite and geosynthetic materials. The durability and performance of pavements are directly related to the stability of the subgrade and base layers. Therefore, the reinforcement of these layers is crucial for extending road lifespan and reducing maintenance costs. Composite and geosynthetic materials offer superior mechanical properties, durability, and ease of application compared to traditional reinforcement methods. This bibliometric review is based on the analysis of publications obtained from the Web of Science databases. The study examines publication trends, top authors, institutions, countries, journals, and keywords. Additionally, citation analyses and network maps are used to assess the knowledge flow and interactions within the field. The analysis results demonstrate a growing interest in the use of composite and geosynthetic materials for reinforcing subgrade and base layers. Particularly, the use of materials such as geotextiles, geogrids, and fiber-reinforced composites is becoming widespread. Research shows that these materials increase soil bearing capacity, reduce deformation, and improve pavement performance. This study summarizes the current state and future research directions of composite and geosynthetic material usage in pavements. The findings provide valuable insights to guide researchers and engineering applications.

Supporting Institution

Leiden University

Thanks

The bibliometric data used in this study were obtained from the Web of Science Core Collection database. VOSviewer software was employed for bibliometric network analyses. I would like to express my gratitude to Clarivate Analytics for providing access to the database and to Leiden University for their software support.

References

  • Pinto, M. I. M. (2003). Applications of geosynthetics for soil reinforcement. Proceedings of the Institution of Civil Engineers-Ground Improvement, 7(2), 61-72. https://doi.org/10.1680/grim.2003.7.2.61
  • Yang, X., & Han, J. (2013). Analytical model for resilient modulus and permanent deformation of geosynthetic-reinforced unbound granular material. Journal of Geotechnical and Geoenvironmental Engineering, 139(9), 1443-1453. https://doi.org/10.1061/(asce)gt.1943-5606.0000879
  • Chen, Q., Hanandeh, S., Abu-Farsakh, M., & Mohammad, L. (2018). Performance evaluation of full-scale geosynthetic reinforced flexible pavement. Geosynthetics International, 25(1), 26-36. https://doi.org/10.1680/jgein.17.00031
  • Sudarsanan, N., Arulrajah, A., Karpurapu, R., & Amrithalingam, V. (2019). Digital image correlation technique for measurement of surface strains in reinforced asphalt concrete beams under fatigue loading. Journal of Materials in Civil Engineering, 31(8), 04019135. https://doi.org/10.1061/(asce)mt.1943-5533.0002743
  • Saad, B., Mitri, H., & Poorooshasb, H. (2006). 3D FE analysis of flexible pavement with geosynthetic reinforcement. Journal of transportation Engineering, 132(5), 402-415. https://doi.org/10.1061/(asce)0733-947x(2006)132:5(402)
  • Perkins, S. W., & Ismeik, M. (1997). A synthesis and evaluation of geosynthetic-reinforced base layers in flexible pavements-part II. Geosynthetics International, 4(6), 605-621. https://doi.org/10.1680/gein.4.0107
  • Abu-Farsakh, M., Hanandeh, S., Mohammad, L., & Chen, Q. (2016). Performance of geosynthetic reinforced/stabilized paved roads built over soft soil under cyclic plate loads. Geotextiles and Geomembranes, 44(6), 845-853. https://doi.org/10.1016/j.geotexmem.2016.06.009
  • Sobhan, K., & Mashnad, M. (2001). Roller-compacted fiber concrete pavement foundation with recycled aggregate and waste plastics. Transportation research record, 1775(1), 53-63. https://doi.org/10.3141/1775-08
  • Divakar, M., Gottumukkala, B., Swarna, S. T., Prasad, P. S., & Arunkumar, G. (2024). Performance evaluation of geosynthetic reinforced marginal material as base layer over weak subgrade. International Journal of Pavement Engineering, 25(1), 2318605. https://doi.org/10.1080/10298436.2024.2318605
  • Harianto, T., Djamaluddin, A. R., & Arsyad, A. (2024). The Performance of Geosynthetic Reinforcement Road Pavement Over Expansive Soil Subgrade. Civil Engineering Journal, 10(12), 4117-4131. https://doi.org/10.28991/cej-2024-010-12-020
  • Panigrahi, B., & Pradhan, P. K. (2019). Improvement of bearing capacity of soil by using natural geotextile. International Journal of Geo-Engineering, 10, 1-12. https://doi.org/10.1186/s40703-019-0105-7
  • Han, J., & Guo, J. (2015). Geosynthetic-stabilized vegetated earth surfaces for environmental sustainability in civil engineering. In Innovative Materials and Design for Sustainable Transportation Infrastructure 2015, 276-285. https://doi.org/10.1061/9780784479278.026
  • Han, J., Thakur, J. K., Corey, R., Christopher, B. R., Khatri, D., & Acharya, B. (2012). Assessment of QC/QA Technologies for Evaluating Properties and Performance of Geosynthetics in Roadway Systems. GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, 1350-1359. https://doi.org/10.1061/9780784412121.139
  • Vinod, P., & Minu, M. (2010). Use of coir geotextiles in unpaved road construction. Geosynthetics International, 17(4), 220-227. https://doi.org/10.1680/gein.2010.17.4.220
  • Hufenus, R., Rueegger, R., Banjac, R., Mayor, P., Springman, S. M., & Brönnimann, R. (2006). Full-scale field tests on geosynthetic reinforced unpaved roads on soft subgrade. Geotextiles and geomembranes, 24(1), 21-37. https://doi.org/10.1016/j.geotexmem.2005.06.002
  • Adhikari, S., Khattak, M. J., & Adhikari, B. (2020). Mechanical characteristics of Soil-RAP-Geopolymer mixtures for road base and subbase layers. International Journal of Pavement Engineering, 21(4), 483-496. https://doi.org/10.1080/10298436.2018.1492131
  • Mohammadinia, A., Arulrajah, A., Sanjayan, J., Disfani, M. M., Win Bo, M., & Darmawan, S. (2016). Stabilization of demolition materials for pavement base/subbase applications using fly ash and slag geopolymers. Journal of Materials in Civil Engineering, 28(7), 04016033. https://doi.org/10.1061/(asce)mt.1943-5533.0001526
  • Sureshvel, V., Suchithra, S., & Ponmohan, K. B. (2020). Shear behavior of concrete beam reinforced with carbon coated steel fiber. International Journal of Recent Technology and Engineering, 8(6), 242467388. https://doi.org/10.35940/ijrte.f8228.038620
  • Hoyos, L. R., Puppala, A. J., & Ordonez, C. A. (2011). Characterization of cement-fiber-treated reclaimed asphalt pavement aggregates: preliminary investigation. Journal of Materials in Civil Engineering, 23(7), 977-989. https://doi.org/10.1061/(asce)mt.1943-5533.0000267
  • Akram, H., Hozayen, H. A., Abdelfatah, A., & Khodary, F. (2024). Fiber Showdown: A Comparative Analysis of Glass vs. Polypropylene Fibers in Hot-Mix Asphalt Fracture Resistance. Buildings, 14(9), 2732. https://doi.org/10.3390/buildings14092732
  • Slebi-Acevedo, C. J., Lastra-González, P., Pascual-Muñoz, P., & Castro-Fresno, D. (2019). Mechanical performance of fibers in hot mix asphalt: A review. Construction and Building Materials, 200, 756-769. https://doi.org/10.1016/j.conbuildmat.2018.12.171
  • George, A. M., Banerjee, A., Puppala, A. J., & Saladhi, M. (2021). Performance evaluation of geocell-reinforced reclaimed asphalt pavement (RAP) bases in flexible pavements. International Journal of Pavement Engineering, 22(2), 181-191. https://doi.org/10.1080/10298436.2019.1587437
  • Mashaan, N. S., Chegenizadeh, A., & Nikraz, H. (2022). Evaluation of the performance of two Australian waste-plastic-modified hot mix asphalts. Recycling, 7(2), 16. https://doi.org/10.3390/recycling7020016
  • Abdulruhman Saleh, H., & Musbah Al Allam, A. (2019). Evaluation of the Mechanical Properties of Asphalt Mixture Modified with RPET. Univers. J. Eng. Sci, 7, 27-31. https://doi.org/10.13189/ujes.2019.070201
  • Asim, M. H. W., Thamer, A. A., & Kadhim, Y. N. (2022). Using nanoclay hydrophilic bentonite as a filler to enhance the mechanical properties of asphalt. Journal of Applied Engineering Science, 20(1), 300-304. https://doi.org/10.5937/jaes0-35111
  • Ling, H. I., & Liu, Z. (2001). Performance of geosynthetic-reinforced asphalt pavements. Journal of Geotechnical and Geoenvironmental Engineering, 127(2), 177-184. https://doi.org/10.1061/(asce)1090-0241(2001)127:2(177)
  • Palmeira, E. M., & Andrade, H. K. P. A. (2010). Protection of buried pipes against accidental damage using geosynthetics. Geosynthetics International, 17(4), 228-241. https://doi.org/10.1680/gein.2010.17.4.228
  • Han, J., Pokharel, S. K., Yang, X., Manandhar, C., Leshchinsky, D., Halahmi, I., & Parsons, R. L. (2011). Performance of geocell-reinforced RAP bases over weak subgrade under full-scale moving wheel loads. Journal of Materials in Civil Engineering, 23(11), 1525-1534. https://doi.org/10.1061/(asce)mt.1943-5533.0000286
  • Perkins, S. W., & Cortez, E. R. (2005). Evaluation of base-reinforced pavements using a heavy vehicle simulator. Geosynthetics International, 12(2), 86-98. https://doi.org/10.1680/gein.2005.12.2.86
  • Palmeira, E. M., & Antunes, L. G. (2010). Large scale tests on geosynthetic reinforced unpaved roads subjected to surface maintenance. Geotextiles and Geomembranes, 28(6), 547-558. https://doi.org/10.1016/j.geotexmem.2010.03.002
  • Kazemian, S., Huat, B. B., Arun Prasad, A. P., & Barghchi, M. (2010). A review of stabilization of soft soils by injection of chemical grouting. 4(12), 5862-5868.
  • Chang, I., Im, J., & Cho, G. C. (2016). Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability, 8(3), 251. https://doi.org/10.3390/su8030251
  • Shubber, K. H., & Saad, A. A. (2020). Subgrade stabilization strategies effect on pavement thickness according to AASHTO pavement design method. In IOP Conference Series: Materials Science and Engineering 737(1), 012145. https://doi.org/10.1088/1757-899x/737/1/012145
  • Sitharam, T. G., Parthasarathy, C. R., & Kolathayar, S. (Eds.). (2021). Ground improvement techniques: Select Proceedings of 7th ICRAGEE 2020. Springer Singapore. https://doi.org/10.1007/978-981-15-9988-0
  • Afrin, H. (2017). A review on different types soil stabilization techniques. International Journal of Transportation Engineering and Technology, 3(2), 19-24. https://doi.org/10.11648/j.ijtet.20170302.12
  • Jit, C. E. L., Nujid, M., Idrus, J., Tholibon, D. A., & Bawadi, N. F. (2021). Effectiveness of different admixtures on Atterberg limit and compaction characteristics of stabilized soil. In IOP Conference Series: Earth and Environmental Science 920(1), 012025. https://doi.org/10.1088/1755-1315/920/1/012025
  • Chang, I., Lee, M., Tran, A. T. P., Lee, S., Kwon, Y. M., Im, J., & Cho, G. C. (2020). Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transportation Geotechnics, 24, 100385. https://doi.org/10.1016/j.trgeo.2020.100385
  • Tafreshi, S. M., Khalaj, O., & Dawson, A. R. (2014). Repeated loading of soil containing granulated rubber and multiple geocell layers. Geotextiles and Geomembranes, 42(1), 25-38. https://doi.org/10.1016/j.geotexmem.2013.12.003
  • Ateş, A. (2013). The Effect of Polymer‐Cement Stabilization on the Unconfined Compressive Strength of Liquefiable Soils. International Journal of Polymer Science, 2013(1), 356214. https://doi.org/10.1155/2013/356214
  • Jalal, F. E., Xu, Y., Jamhiri, B., & Memon, S. A. (2020). On the Recent Trends in Expansive Soil Stabilization Using Calcium‐Based Stabilizer Materials (CSMs): A Comprehensive Review. Advances in Materials Science and Engineering, 2020(1), 1510969. https://doi.org/10.1155/2020/1510969
  • Subaida, E. A., Chandrakaran, S., & Sankar, N. (2009). Laboratory performance of unpaved roads reinforced with woven coir geotextiles. Geotextiles and geomembranes, 27(3), 204-210. https://doi.org/10.1016/j.geotexmem.2008.11.009
  • Edil, T. B., Benson, C. H., Bin-Shafique, M., Tanyu, B. F., Kim, W. H., & Senol, A. (2002). Field evaluation of construction alternatives for roadways over soft subgrade. Transportation Research Record, 1786(1), 36-48. https://doi.org/10.3141/1786-05
  • Minchala, D., Gottumukkala, B., Prasad, P. S., & Swarna, S. T. (2024). Performance evaluation of marginal materials in geosynthetic reinforced base layers. Road Materials and Pavement Design, 1-14. https://doi.org/10.1080/14680629.2024.2373228
  • Arulrajah, A., Ali, M. M. Y., Disfani, M. M., & Horpibulsuk, S. (2014). Recycled-glass blends in pavement base/subbase applications: laboratory and field evaluation. Journal of materials in Civil Engineering, 26(7), 04014025. https://doi.org/10.1061/(asce)mt.1943-5533.0000966
  • Tayh, S., & Khalif, D. Y. K. (2023). Investigation of the Mechanical Performance of Stone Mastic Asphalt Mixtures Modified by Recycled Waste Polymers. Journal of Engineering and Sustainable Development, 27(4), 429-447. https://doi.org/10.31272/jeasd.27.4.2
  • Al-Mousawi, E. J., Al-Rubaee, R. H., & Shubber, A. A. (2021). Evaluation the Physical Properties and Marshall Stability for Asphalt Modified with Waste Polypropylene and Nanosilica Powder. In IOP Conference Series: Materials Science and Engineering 1090(1), 012007. https://doi.org/10.1088/1757-899x/1090/1/012007
  • Cheng, P., Li, Y., & Zhang, Z. (2020). Effect of phenolic resin on the rheological and morphological characteristics of styrene-butadiene rubber-modified asphalt. Materials, 13(24), 5836. https://doi.org/10.3390/ma13245836
  • Kashyap, G., Bathla, A., & Malik, A. N. (2019). Determine the Marshall Stability and Flow Parameters of Semi Dense Bituminous Concrete Mixed with Waste Plastic. International Journal for Research in Applied Science and Engineering Technology, 7(8), 649-653. https://doi.org/10.22214/ijraset.2019.8094
  • Hossiney, N., Sepuri, H. K., Mohan, M. K., Chandra K, S., Lakshmish Kumar, S., & HK, T. (2020). Geopolymer concrete paving blocks made with Recycled Asphalt Pavement (RAP) aggregates towards sustainable urban mobility development. Cogent Engineering, 7(1), 1824572. https://doi.org/10.1080/23311916.2020.1824572
  • Maharaj, C., Maharaj, R., & Maynard, J. (2015). The effect of polyethylene terephthalate particle size and concentration on the properties of asphalt and bitumen as an additive. Progress in Rubber Plastics and Recycling Technology, 31(1), 1-23. https://doi.org/10.1177/147776061503100101
  • Jayakody, S., Gallage, C., & Ramanujam, J. (2019). Performance characteristics of recycled concrete aggregate as an unbound pavement material. Heliyon, 5(9). https://doi.org/10.1016/j.heliyon.2019.e02494
  • AlShareedah, O., & Nassiri, S. (2021). Pervious concrete mixture optimization, physical, and mechanical properties and pavement design: A review. Journal of Cleaner Production, 288, 125095. https://doi.org/10.1016/j.jclepro.2020.125095
  • AlShareedah, O., Nassiri, S., Chen, Z., Englund, K., Li, H., & Fakron, O. (2019). Field performance evaluation of pervious concrete pavement reinforced with novel discrete reinforcement. Case Studies in Construction Materials, 10, e00231. https://doi.org/10.1016/j.cscm.2019.e00231
  • Shakrani, S. A., Ayob, A., & Rahim, M. A. A. (2017). A review of nanoclay applications in the pervious concrete pavement. In AIP Conference Proceedings 1885(1). https://doi.org/10.1063/1.5002243
  • Verma, P., Shukla, S., & Pal, P. (2025). Potential Application of Nano-silica in Concrete Pavement: A Bibliographic Analysis and Comprehensive Review. Materials Today Sustainability, 101079. https://doi.org/10.1016/j.mtsust.2025.101079
  • Papatzani, S., Grammatikos, S., & Paine, K. (2019). Permeable nanomontmorillonite and fibre reinforced cementitious binders. Materials, 12(19), 3245. https://doi.org/10.3390/ma12193245
  • Perkins, S. W. (1999). Mechanical response of geosynthetic-reinforced flexible pavements. Geosynthetics international, 6(5), 347-382. https://doi.org/10.1680/gein.6.0157
  • Afzal, G., & Rasool, T. (2024). Sustainable pervious concrete incorporated with graphene oxide: a comprehensive analysis of mechanical, infiltration and microstructure performance. International Journal of Pavement Engineering, 25(1), 2335309. https://doi.org/10.1080/10298436.2024.2335309
  • Adnan, E., Al Waily, M. J., & Jawad, Z. F. (2023). A Review Study on the Effect of Nanomaterials and Local Materials on Soil Geotechnical Properties. In E3S Web of Conferences 427, 01010. https://doi.org/10.1051/e3sconf/202342701010
  • Shaffie, E., Hanif, W. W., Arshad, A. K., & Hashim, W. (2017). Rutting resistance of asphalt mixture with cup lumps modified binder. In IOP Conference Series: Materials Science and Engineering 271(1), 012056. https://doi.org/10.1088/1757-899x/271/1/012056
  • Landi, D., Marconi, M., Bocci, E., & Germani, M. (2020). Comparative life cycle assessment of standard, cellulose-reinforced and end of life tires fiber-reinforced hot mix asphalt mixtures. Journal of Cleaner Production, 248, 119295. https://doi.org/10.1016/j.jclepro.2019.119295
  • Zhang, K., Lim, J., Nassiri, S., Englund, K., & Li, H. (2019). Reuse of carbon fiber composite materials in porous hot mix asphalt to enhance strength and durability. Case Studies in Construction Materials, 11, e00260. https://doi.org/10.1016/j.cscm.2019.e00260
  • Hayat, U., Rahim, A., Khan, A. H., & Rehman, Z. U. (2020). Use of plastic wastes and reclaimed asphalt for sustainable development. The Baltic Journal of road and bridge engineering, 15(2), 182-196. https://doi.org/10.7250/bjrbe.2020-15.479
  • Chen, J. S., Sun, Y. C., Liao, M. C., Huang, C. C., & Tsou, K. W. (2013). Evaluation of permeable friction course mixes with various binders and additives. Journal of materials in civil engineering, 25(5), 573-579. https://doi.org/10.1061/(asce)mt.1943-5533.0000631
  • Ayash, A. A., Raouf, R. M., & Eweed, K. M. (2020). Mechanical Characteristics of Asphalt Mixture Modified by Polypropylene Waste. In Defect and Diffusion Forum 398, 90-97. https://doi.org/10.4028/www.scientific.net/ddf.398.90
  • Isa, N., Olowosulu, A., & Joel, M. (2018). Mechanistic evaluation of the effect of calcium carbide waste on properties of asphalt mixes. Nigerian Journal of Technological Development, 15(1), 20-25. https://doi.org/10.4314/njtd.v15i1.4
  • Wang, Z., Yang, G., Wang, X., Liang, X., Liu, M., & Zhang, H. (2024). Study on Low Temperature Cracking Resistance of Carbon Fiber Geogrid Reinforced Asphalt Pavement Surface Combined Body. Polymers, 16(15), 2168. https://doi.org/10.3390/polym16152168
  • Lyu, Z., Shen, A., & Meng, W. (2021). Properties, mechanism, and optimization of superabsorbent polymers and basalt fibers modified cementitious composite. Construction and Building Materials, 276, 122212. https://doi.org/10.1016/j.conbuildmat.2020.122212
  • Fattah, M. Y., Abdulkhabeer, W., & Hilal, M. M. (2021). Characteristics of asphalt binder and mixture modified with waste polypropylene. Engineering and Technology Journal, 39(8), 1224-1230. https://doi.org/10.30684/etj.v39i8.1716
  • Oreto, C., Russo, F., Veropalumbo, R., Viscione, N., Biancardo, S. A., & Dell’Acqua, G. (2021). Life cycle assessment of sustainable asphalt pavement solutions involving recycled aggregates and polymers. Materials, 14(14), 3867. https://doi.org/10.3390/ma14143867
  • Copeland, A. (2011). Reclaimed asphalt pavement in asphalt mixtures: State of the practice (No. FHWA-HRT-11-021). United States. Federal Highway Administration. Office of Research, Development, and Technology. https://rosap.ntl.bts.gov/view/dot/40918
  • Milad, A., Taib, A. M., Ahmeda, A. G., Solla, M., & Yusoff, N. I. M. (2020). A review of the use of reclaimed asphalt pavement for road paving applications. Jurnal Teknologi (Sciences & Engineering), 82(3). https://doi.org/10.11113/jt.v82.14320
  • Enieb, M., Al-Jumaili, M. A. H., Al-Jameel, H. A. E., & Eltwati, A. S. (2021). Sustainability of using reclaimed asphalt pavement: based-reviewed evidence. In Journal of Physics: Conference Series 1973(1), 012242. https://doi.org/10.1088/1742-6596/1973/1/012242
  • Kumar P. G., Madhunika, N., Sindhura, Y., Dwarakamai, S., Praneetha, A., Sravani, T. H., & Sridevi, P. (2020). An Experimental Investigation on Soil Stabilization using Terrazyme. In IOP Conference Series. Materials Science and Engineering 1006(1). https://doi.org/10.1088/1757-899x/1006/1/012023
  • Al-Shujairi, A. O., Al-Taie, A. J., & Al-Mosawe, H. M. (2021). Review on applications of RAP in civil engineering. In IOP Conference Series: Materials Science and Engineering 1105(1), 012092. https://doi.org/10.1088/1757-899x/1105/1/012092
  • Antunes, V., Neves, J., & Freire, A. C. (2021). Performance assessment of reclaimed asphalt pavement (RAP) in road surface mixtures. Recycling, 6(2), 32. https://doi.org/10.3390/recycling6020032
  • Widayanti, A., Ria, A. S., Ekaputri, J. J., & Suprayitno, H. (2018). Characterization of reclaimed asphalt pavement (RAP) as a road pavement material (National Road Waru, Sidoarjo). In MATEC Web of Conferences 181, 05001. https://doi.org/10.1051/matecconf/201818105001
  • Ma, X., Wang, J., & Xu, Y. (2022). Investigation on the effects of RAP proportions on the pavement performance of recycled asphalt mixtures. Frontiers in Materials, 8, 842809. https://doi.org/10.3389/fmats.2021.842809
  • Thompson, D. F., & Walker, C. K. (2015). A descriptive and historical review of bibliometrics with applications to medical sciences. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 35(6), 551-559. https://doi.org/10.1002/phar.1586
  • de Oliveira, O. J., da Silva, F. F., Juliani, F., Barbosa, L. C. F. M., & Nunhes, T. V. (2019). Bibliometric method for mapping the state-of-the-art and identifying research gaps and trends in literature: An essential instrument to support the development of scientific projects. In Scientometrics recent advances. IntechOpen. https://doi.org/10.5772/intechopen.85856
  • Wei, C., Zhang, M., Li, G., Jiang, Y., & Ren, J. (2025). Evaluation and application of basalt fiber reinforcement mesh for improving pavement interlayer bonding property via a new approach of interlayer shear test of composite plate. Construction and Building Materials, 469, 140518. https://doi.org/10.1016/j.conbuildmat.2025.140518
  • Fernández-González, J. M., Diaz-Lopez, C., Martin-Pascual, J., & Zamorano, M. (2020). Recycling organic fraction of municipal solid waste: Systematic literature review and bibliometric analysis of research trends. Sustainability, 12(11), 4798. https://doi.org/10.3390/su12114798
  • Bonicelli, A., Preciado, J., Rueda, A., & Duarte, A. (2019). Semi-flexible material: A solution for high-performance pavement infrastructures. In IOP Conference Series: Materials Science and Engineering 471(3), 032062. https://doi.org/10.1088/1757-899x/471/3/032062
  • Alreahi, M., Bujdoso, Z., Dávid, L. D., & Gyenge, B. (2023). Green supply chain management in hotel industry: A systematic review. Sustainability, 15(7), 5622. https://doi.org/10.3390/su15075622
  • Herrera-Franco, G., Montalvan-Burbano, N., Carrion-Mero, P., Jaya-Montalvo, M., & Gurumendi-Noriega, M. (2021). Worldwide research on geoparks through bibliometric analysis. Sustainability, 13(3), 1175. https://doi.org/10.3390/su13031175
  • Srisawad, S., & Lertsittiphan, K. (2021). Bibliometric analysis of references selection that influence citations among articles of thai multidisciplinary journals. Journal of Scientometric Research, 10(3), 288-296. https://doi.org/10.5530/jscires.10.3.45
  • Xie, L., Chen, Z., Wang, H., Zheng, C., & Jiang, J. (2020). Bibliometric and visualized analysis of scientific publications on atlantoaxial spine surgery based on Web of Science and VOSviewer. World neurosurgery, 137, 435-442. https://doi.org/10.1016/j.wneu.2020.01.171
  • Yan, L., & Zhiping, W. (2023). Mapping the literature on academic publishing: A bibliometric analysis on WOS. Sage Open, 13(1), 21582440231158562. https://doi.org/10.1177/21582440231158562
  • Ellegaard, O. (2018). The application of bibliometric analysis: disciplinary and user aspects. Scientometrics, 116(1), 181-202. https://doi.org/10.1007/s11192-018-2765-z
  • Mejia, C., Wu, M., Zhang, Y., & Kajikawa, Y. (2021). Exploring topics in bibliometric research through citation networks and semantic analysis. Frontiers in Research Metrics and Analytics, 6, 742311. https://doi.org/10.3389/frma.2021.742311
  • Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of business research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070
  • Ho, H. T. N., & Luong, H. T. (2022). Research trends in cybercrime victimization during 2010–2020: a bibliometric analysis. SN Social Sciences, 2(1), 4. https://doi.org/10.1007/s43545-021-00305-4
  • Shatu, F., Aston, L., Patel, L. B., & Kamruzzaman, M. (2022). Transit oriented development: A bibliometric analysis of research. Advances in transport policy and planning, 9, 231-275. https://doi.org/10.1016/bs.atpp.2021.06.001
  • Ghani, N. A., Hamid, S., Hashem, I. A. T., & Ahmed, E. (2019). Social media big data analytics: A survey. Computers in Human behavior, 101, 417-428. https://doi.org/10.1016/j.chb.2018.08.039
  • Alsmadi, A. A., Alrawashdeh, N., Al-Dweik, A. A. F., & Al-Assaf, M. (2022). Cryptocurrencies: A bibliometric analysis. International Journal of Data & Network Science, 6(3), 619. https://doi.org/10.5267/j.ijdns.2022.4.011
  • Al Husaeni, D. F., & Nandiyanto, A. B. D. (2022). Bibliometric using Vosviewer with Publish or Perish (using google scholar data): From step-by-step processing for users to the practical examples in the analysis of digital learning articles in pre and post Covid-19 pandemic. ASEAN Journal of Science and Engineering, 2(1), 19-46. https://doi.org/10.17509/ajse.v2i1.37368
  • Yu, N., Wang, R., Liu, B., & Zhang, L. (2022). Bibliometric and visual analysis on metabolomics in coronary artery disease research. Frontiers in cardiovascular medicine, 9, 804463. https://doi.org/10.3389/fcvm.2022.804463
  • Pan, X., Shao, T., Zheng, X., Zhang, Y., Ma, X., & Zhang, Q. (2023). Energy and sustainable development nexus: A review. Energy Strategy Reviews, 47, 101078. https://doi.org/10.1016/j.esr.2023.101078
  • Deng, H., Huang, Z., Li, Z., Cao, L., He, Y., Sun, N., ... & Wu, J. (2023). Systematic bibliometric and visualized analysis of research hotspots and trends in attention-deficit hyperactivity disorder neuroimaging. Frontiers in Neuroscience, 17, 1098526. https://doi.org/10.3389/fnins.2023.1098526
  • Nowell, L. S., Norris, J. M., White, D. E., & Moules, N. J. (2017). Thematic analysis: Striving to meet the trustworthiness criteria. International journal of qualitative methods, 16(1), 1609406917733847. https://doi.org/10.1177/1609406917733847
  • Erdös, T., & Ramseyer, F. T. (2021). Change process in coaching: Interplay of nonverbal synchrony, working alliance, self-regulation, and goal attainment. Frontiers in Psychology, 12, 580351. https://doi.org/10.3389/fpsyg.2021.580351
  • Liu, R., Ran, W., & Liu, S. (2023). Blockchain technology applied to supply chain management: a systems’ analysis. Mobile Information Systems, 2023(1), 6046503. https://doi.org/10.1155/2023/6046503
  • Zhao, M., Zhang, H., & Li, Z. (2022). A bibliometric and visual analysis of nanocomposite hydrogels based on VOSviewer from 2010 to 2022. Frontiers in Bioengineering and Biotechnology, 10, 914253. https://doi.org/10.3389/fbioe.2022.914253
  • Bratt, S. (2018). Digital library keyword analysis for visualization education research: Issues and recommendations. Journal of Applied Research in Higher Education, 10(4), 595-611. https://doi.org/10.1108/jarhe-03-2018-0047
  • Liu, M., Lee, J., Kang, J., & Liu, S. (2016). What we can learn from the data: A multiple-case study examining behavior patterns by students with different characteristics in using a serious game. Technology, Knowledge and Learning, 21, 33-57. https://doi.org/10.1007/s10758-015-9263-7
  • Rafols, I., Porter, A. L., & Leydesdorff, L. (2010). Science overlay maps: A new tool for research policy and library management. Journal of the American Society for information Science and Technology, 61(9), 1871-1887. https://doi.org/10.1002/asi.21368
There are 106 citations in total.

Details

Primary Language English
Subjects Transportation Engineering
Journal Section Research Articles
Authors

Süleyman Gökova 0000-0001-9620-1760

Publication Date
Submission Date March 13, 2025
Acceptance Date April 16, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Gökova, S. (n.d.). A bibliometric analysis of pavement engineering research: Focus on composite and geosynthetic materials. Journal of Innovative Transportation, 6(1), 1-23. https://doi.org/10.53635/jit.1657504