Research Article
BibTex RIS Cite
Year 2023, , 97 - 104, 21.12.2023
https://doi.org/10.33187/jmsm.1194487

Abstract

References

  • [1] G. Taguchi, Introduction to Quality Engineering: Designing Quality into Products and Processes, Kraus, White Plains, NY, 1986.
  • [2] G. Taguchi, System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Cost, UNIPUB/Kraus International, White Plains, NY, 1987.
  • [3] A. I. Khuri, Multiresponse surface methodology, Handbook of Statist., 13 (1996), 377–406.
  • [4] H. H. Chang, Dynamic multi–response experiments by backpropagation networks and desirability functions, J. Chin. Inst. Eng., 23(4) (2010), 280-288.
  • [5] I. J. Jeong, K. J. Kim, An interactive desirability function method to multiresponse optimization, European J. Oper. Res., 195(2) (2008), 412-426.
  • [6] I. J. Jeong, K.J. Kim, D-STEM: a modified step method with desirability function concept, Comput. Oper. Res., 32 (2005), 3175-3190.
  • [7] D.H., Lee, K.J. Kim, M. K¨oksalan, A posterior preference articulation approach to multiresponse surface optimization , European J. Oper. Res., 210 (2011), 301-309.
  • [8] D.H. Lee, K.J. Kim, M. Köksalan, An interactive method to multiresponse surface optimization based on pairwise comparisons, IIE Transactions, 44(1) (2012), 13-26.
  • [9] B. Akteke Öztürk, G. Köksal, G. W. Weber, Nonconvex optimization desirability functions, Qual. Eng., 30(2) (2017), 293-310.
  • [10] B. Akteke Öztürk, G. W. Weber, G. Köksal, Optimization of generalized desirability functions under model uncertainty, Optimization, 66(12) (2017), 2157-2169.
  • [11] R. T. Marler, J. S. Arora, Survey of multi-objective optimization methods for engineering, Struct. Multidiscip. Optim., 26(6) (2004), 369-395.
  • [12] K. S. Park, K. J. Kim, Optimizing multi-response surface problems: how to use multi-objective optimization techniques, IIE Transactions, 37(6) (2005), 523-532.
  • [13] E. C. Jr. Harrington, The desirability function, Ind. Qual. Control, 21 (1965), 494-498.
  • [14] G. Derringer, R. Suich, Simultaneous optimization of several responsevariables, J. Qual. Technol., 12 (1980), 214-219.
  • [15] G. Derringer, A balancing act, optimizing a products properties, Qual. Prog., 27 (1994), 51-57.
  • [16] E. Del Castillo, D. C. Montgomery, D. R. Mc Carville, Modified desirability functions for multiple response optimization, J. Qual. Technol., 28(3) (1996), 337-345.
  • [17] B. Akteke Öztürk, G. W. Weber, G. Köksal, Generalized desirability functions: a structural and topological analysis of desirability functions, Optimization, 69(1) (2019), 115-130.
  • [18] B. Akteke Öztürk, G. W. Weber, G. Köksal, Desirability functions in multiresponse optimization, Communications in computer and information science, Springer, Cham, (2015), 129–146.
  • [19] BARON, https://www.gams.com/latest/docs/S_BARON.html, v. 8.1.5, 2010.
  • [20] GAMS, https://www.gams.com/, v. 23.8.2, 2012.
  • [21] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, A. Mahajan, Mixed-integer nonlinear optimization. Acta Numer., 22 (2013), 1-131.
  • [22] S. L. Digabel, Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm, ACM Trans. Math. Software, 37(4) (2011), 1-15.
  • [23] S. Sivanandam, S. Deepa, Genetic Algorithm Implementation Using Matlab. In: Introduction to Genetic Algorithms. Springer, Berlin, Heidelberg, 2008.
  • [24] R. Porn, K.M. Bjork, T. Westerlund, Global solution of optimization problems with signomial parts, Discrete Optim., 5 (2008), 108-120.
  • [25] K. Kim, D. Lin, Simultaneous optimization of multiple responses by maximizing exponential desirability functions, Appl. Stat., 49(C) (2000), 311-325.

An Application of Infinite Programming on Desirability Functions

Year 2023, , 97 - 104, 21.12.2023
https://doi.org/10.33187/jmsm.1194487

Abstract

When assessing the quality of a system or product, it is necessary to take all responses into account and optimize them in a concurrent manner to find the factor levels that satisfy the overall system, process, or product properties to solve the robust design problem. This problem can be solved as a multi-response optimization problem. There are many methods suggested to solve this problem based on different disciplines like multi-objective optimization. In this study, we improve the theory of nondifferentiable desirability functions' optimization for which the so-called gradient-based methods are not useful. In this study, we propose an infinite programming approach for nondifferentiable desirability functions including more than one nondifferentiable point. We employed DNLP model of GAMS/BARON which is a nondifferentiable solver, however, the solution of more than one nondifferentiable point problem is resulted as infeasible. We also tested MATLAB/NOMAD which is a derivative-free solver for MINLP problems, however, MATLAB/NOMAD also did not succeed and could not solve this nondifferentiable problem. Lastly, we use a genetic algorithm that is implemented under MATLAB and it also cannot find a feasible solution. We use an example that is solved by different desirability functions approaches before and show that the desirability functions approach with more than one nondifferentiable point is a good alternative to the ones in the literature. We present the conclusion and future studies at the end of the paper.

References

  • [1] G. Taguchi, Introduction to Quality Engineering: Designing Quality into Products and Processes, Kraus, White Plains, NY, 1986.
  • [2] G. Taguchi, System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Cost, UNIPUB/Kraus International, White Plains, NY, 1987.
  • [3] A. I. Khuri, Multiresponse surface methodology, Handbook of Statist., 13 (1996), 377–406.
  • [4] H. H. Chang, Dynamic multi–response experiments by backpropagation networks and desirability functions, J. Chin. Inst. Eng., 23(4) (2010), 280-288.
  • [5] I. J. Jeong, K. J. Kim, An interactive desirability function method to multiresponse optimization, European J. Oper. Res., 195(2) (2008), 412-426.
  • [6] I. J. Jeong, K.J. Kim, D-STEM: a modified step method with desirability function concept, Comput. Oper. Res., 32 (2005), 3175-3190.
  • [7] D.H., Lee, K.J. Kim, M. K¨oksalan, A posterior preference articulation approach to multiresponse surface optimization , European J. Oper. Res., 210 (2011), 301-309.
  • [8] D.H. Lee, K.J. Kim, M. Köksalan, An interactive method to multiresponse surface optimization based on pairwise comparisons, IIE Transactions, 44(1) (2012), 13-26.
  • [9] B. Akteke Öztürk, G. Köksal, G. W. Weber, Nonconvex optimization desirability functions, Qual. Eng., 30(2) (2017), 293-310.
  • [10] B. Akteke Öztürk, G. W. Weber, G. Köksal, Optimization of generalized desirability functions under model uncertainty, Optimization, 66(12) (2017), 2157-2169.
  • [11] R. T. Marler, J. S. Arora, Survey of multi-objective optimization methods for engineering, Struct. Multidiscip. Optim., 26(6) (2004), 369-395.
  • [12] K. S. Park, K. J. Kim, Optimizing multi-response surface problems: how to use multi-objective optimization techniques, IIE Transactions, 37(6) (2005), 523-532.
  • [13] E. C. Jr. Harrington, The desirability function, Ind. Qual. Control, 21 (1965), 494-498.
  • [14] G. Derringer, R. Suich, Simultaneous optimization of several responsevariables, J. Qual. Technol., 12 (1980), 214-219.
  • [15] G. Derringer, A balancing act, optimizing a products properties, Qual. Prog., 27 (1994), 51-57.
  • [16] E. Del Castillo, D. C. Montgomery, D. R. Mc Carville, Modified desirability functions for multiple response optimization, J. Qual. Technol., 28(3) (1996), 337-345.
  • [17] B. Akteke Öztürk, G. W. Weber, G. Köksal, Generalized desirability functions: a structural and topological analysis of desirability functions, Optimization, 69(1) (2019), 115-130.
  • [18] B. Akteke Öztürk, G. W. Weber, G. Köksal, Desirability functions in multiresponse optimization, Communications in computer and information science, Springer, Cham, (2015), 129–146.
  • [19] BARON, https://www.gams.com/latest/docs/S_BARON.html, v. 8.1.5, 2010.
  • [20] GAMS, https://www.gams.com/, v. 23.8.2, 2012.
  • [21] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, A. Mahajan, Mixed-integer nonlinear optimization. Acta Numer., 22 (2013), 1-131.
  • [22] S. L. Digabel, Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm, ACM Trans. Math. Software, 37(4) (2011), 1-15.
  • [23] S. Sivanandam, S. Deepa, Genetic Algorithm Implementation Using Matlab. In: Introduction to Genetic Algorithms. Springer, Berlin, Heidelberg, 2008.
  • [24] R. Porn, K.M. Bjork, T. Westerlund, Global solution of optimization problems with signomial parts, Discrete Optim., 5 (2008), 108-120.
  • [25] K. Kim, D. Lin, Simultaneous optimization of multiple responses by maximizing exponential desirability functions, Appl. Stat., 49(C) (2000), 311-325.
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Başak Öztürk 0000-0003-3058-5882

Early Pub Date December 7, 2023
Publication Date December 21, 2023
Submission Date October 25, 2022
Acceptance Date July 14, 2023
Published in Issue Year 2023

Cite

APA Öztürk, B. (2023). An Application of Infinite Programming on Desirability Functions. Journal of Mathematical Sciences and Modelling, 6(3), 97-104. https://doi.org/10.33187/jmsm.1194487
AMA Öztürk B. An Application of Infinite Programming on Desirability Functions. Journal of Mathematical Sciences and Modelling. December 2023;6(3):97-104. doi:10.33187/jmsm.1194487
Chicago Öztürk, Başak. “An Application of Infinite Programming on Desirability Functions”. Journal of Mathematical Sciences and Modelling 6, no. 3 (December 2023): 97-104. https://doi.org/10.33187/jmsm.1194487.
EndNote Öztürk B (December 1, 2023) An Application of Infinite Programming on Desirability Functions. Journal of Mathematical Sciences and Modelling 6 3 97–104.
IEEE B. Öztürk, “An Application of Infinite Programming on Desirability Functions”, Journal of Mathematical Sciences and Modelling, vol. 6, no. 3, pp. 97–104, 2023, doi: 10.33187/jmsm.1194487.
ISNAD Öztürk, Başak. “An Application of Infinite Programming on Desirability Functions”. Journal of Mathematical Sciences and Modelling 6/3 (December 2023), 97-104. https://doi.org/10.33187/jmsm.1194487.
JAMA Öztürk B. An Application of Infinite Programming on Desirability Functions. Journal of Mathematical Sciences and Modelling. 2023;6:97–104.
MLA Öztürk, Başak. “An Application of Infinite Programming on Desirability Functions”. Journal of Mathematical Sciences and Modelling, vol. 6, no. 3, 2023, pp. 97-104, doi:10.33187/jmsm.1194487.
Vancouver Öztürk B. An Application of Infinite Programming on Desirability Functions. Journal of Mathematical Sciences and Modelling. 2023;6(3):97-104.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.