Year 2022,
, 35 - 39, 30.04.2022
Seyit Temir
,
Öznur Korkut
References
- [1] W. R. Mann, Mean value methods in iteration, Proc. Am. Math. Soc. 4 (1953), 506-510.
- [2] I. Ishikawa, Fixed point by a new iteration method, Proc. Am. Math. Soc. 44 (1974), 147-150.
- [3] M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217-229.
- [4] R. P. Agarwal, D. O’Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex
Anal., 8(1) (2007), 61-79.
- [5] M. Abbas, T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mat. Vesnik, 66(2) (2014), 223-234.
- [6] F. G¨ursoy, V. Karakaya, A Picard-S hybrid type iteration method for solving a differential equation with retarded argument, (2014), Preprint arXiv
1403.2546, 1-16.
- [7] B. S. Thakur, D. Thakur, M. Postolache, A new iteration scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings,
Appl. Math. Comput., 275 (2016), 147-155.
- [8] K. Ullah, M. Arshad, Numerical reckoning fixed points for Suzuki’s generalized nonexpansive mappings via new iteration process, Filomat, 32(1)
(2018), 187-196.
- [9] K. Aoyama, F. Kohsaka, Fixed point theorem for a-nonexpansive mappings in Banach spaces, Nonlinear Analy., 74(13) (2011), 4378-4391.
- [10] M. Bas¸arır, A. S¸ ahin, On the strong and D-convergence of S-iteration process for generalized nonexpansive mappings on CAT(0) space, Thai J. Math.,
12(3) (2014), 549-559.
- [11] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396-414.
- [12] N. Hussain, K. Ullah, M. Arshad, Fixed point approximation of Suzuki generalized non-expansive mappings via new faster iteration process, J. Nonlinear
Convex Anal., 19 (2018), 1383-1393.
- [13] Z. Opial, Weak convergence of successive approximations for nonexpansive mappings, Bull. Ame. Math.Soc., 73 (1967), 591-597.
- [14] R. Pant, R. Shukla, Approximating fixed points of generalized a-nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim., 38(2) (2017),
248-266.
- [15] A. S¸ ahin, Some new results of M-iteration process in hyperbolic spaces, Carpathian J. Math., 35(2) (2019), 221-232.
- [16] A. S¸ ahin, M. Bas¸arır, Some convergence results of the K*-iteration process in CAT(0) spaces , In: J. L. Cho, Y.L. Jleli, M. Mursaleen, B.Samet, C.Vetro,
(Eds.), Advances in Metric Fixed Point Theory and Applications, Springer, Singapore, (2021).
- [17] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340(2) (2008),
1088-1095.
- [18] J. Schu, Weak and strong convergence of fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc., 43 (1991), 153-159.
- [19] H. F. Senter, W. G. Dotson Jr., Approximating fixed points of nonexpansive mappings, Proc. Am. Math. Soc. 44 (1974), 375-380.
- [20] K. Ullah, F. Ayaz, J. Ahmad, Some convergence results of M iterative process in Banach spaces, Asian-European Journal of Mathematics (2021),
2150017, 12 pages, doi:10.1142/S1793557121500170.
Approximating Fixed Points of Generalized $\alpha-$Nonexpansive Mappings by the New Iteration Process
Year 2022,
, 35 - 39, 30.04.2022
Seyit Temir
,
Öznur Korkut
Abstract
In this paper we introduce a new iteration process for approximation of fixed points. We numerically compare convergence behavior of our iteration process with other iteration process like M-iteration process. We also prove weak and strong convergence theorems for generalized $\alpha-$nonexpansive mappings by using new iteration process. Furthermore we give an example for generalized $\alpha-$nonexpansive mapping but does not satisfy $(C)$ condition.
References
- [1] W. R. Mann, Mean value methods in iteration, Proc. Am. Math. Soc. 4 (1953), 506-510.
- [2] I. Ishikawa, Fixed point by a new iteration method, Proc. Am. Math. Soc. 44 (1974), 147-150.
- [3] M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217-229.
- [4] R. P. Agarwal, D. O’Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex
Anal., 8(1) (2007), 61-79.
- [5] M. Abbas, T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mat. Vesnik, 66(2) (2014), 223-234.
- [6] F. G¨ursoy, V. Karakaya, A Picard-S hybrid type iteration method for solving a differential equation with retarded argument, (2014), Preprint arXiv
1403.2546, 1-16.
- [7] B. S. Thakur, D. Thakur, M. Postolache, A new iteration scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings,
Appl. Math. Comput., 275 (2016), 147-155.
- [8] K. Ullah, M. Arshad, Numerical reckoning fixed points for Suzuki’s generalized nonexpansive mappings via new iteration process, Filomat, 32(1)
(2018), 187-196.
- [9] K. Aoyama, F. Kohsaka, Fixed point theorem for a-nonexpansive mappings in Banach spaces, Nonlinear Analy., 74(13) (2011), 4378-4391.
- [10] M. Bas¸arır, A. S¸ ahin, On the strong and D-convergence of S-iteration process for generalized nonexpansive mappings on CAT(0) space, Thai J. Math.,
12(3) (2014), 549-559.
- [11] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396-414.
- [12] N. Hussain, K. Ullah, M. Arshad, Fixed point approximation of Suzuki generalized non-expansive mappings via new faster iteration process, J. Nonlinear
Convex Anal., 19 (2018), 1383-1393.
- [13] Z. Opial, Weak convergence of successive approximations for nonexpansive mappings, Bull. Ame. Math.Soc., 73 (1967), 591-597.
- [14] R. Pant, R. Shukla, Approximating fixed points of generalized a-nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim., 38(2) (2017),
248-266.
- [15] A. S¸ ahin, Some new results of M-iteration process in hyperbolic spaces, Carpathian J. Math., 35(2) (2019), 221-232.
- [16] A. S¸ ahin, M. Bas¸arır, Some convergence results of the K*-iteration process in CAT(0) spaces , In: J. L. Cho, Y.L. Jleli, M. Mursaleen, B.Samet, C.Vetro,
(Eds.), Advances in Metric Fixed Point Theory and Applications, Springer, Singapore, (2021).
- [17] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340(2) (2008),
1088-1095.
- [18] J. Schu, Weak and strong convergence of fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc., 43 (1991), 153-159.
- [19] H. F. Senter, W. G. Dotson Jr., Approximating fixed points of nonexpansive mappings, Proc. Am. Math. Soc. 44 (1974), 375-380.
- [20] K. Ullah, F. Ayaz, J. Ahmad, Some convergence results of M iterative process in Banach spaces, Asian-European Journal of Mathematics (2021),
2150017, 12 pages, doi:10.1142/S1793557121500170.