Research Article
BibTex RIS Cite

Improved semi-local convergence of the Gauss-Newton method for systems of equations

Year 2018, Volume: 1 Issue: 2, 80 - 85, 30.09.2018
https://doi.org/10.33187/jmsm.432191

Abstract

Our new technique of restricted convergence domains is employed to provide a finer convergence analysis of the Gauss-Newton method in order to solve a certain class of systems of equations under a majorant condition. The advantages are obtained under the same computational cost as in earlier studies such as [5, 14]. Special cases and a numerical example are also given in this study.

References

  • [1] Argyros, I.: On the semilocal convergence of the Gauss-Newton method. Adv. Nonlinear Var.Inequal. 8(2), 93–99, 2005.
  • [2] Argyros, I., Hilout, S.: On the local convergence of the Gauss-Newton method. Punjab Univ. J.Math. 41, 23–33, 2009.
  • [3] Argyros, I., Hilout, S.: On the Gauss-Newton method. J. Appl. Math. Comput. 1–14, 2010.
  • [4] Argyros, I. K, Hilout, S.: Extending the applicability of the Gauss-Newton method under average Lipschitz-type conditions. Numer. Algorithms 58(1), 23–52, 2011.
  • [5] Argyros, I. K, S. George, Expanding the applicability of the Gauss-Newton method for a certain class of systems of equations, J. Numer.Anal. Approx. Theory, vol., 45(1), 3–13, (2016).
  • [6] Argyros, I. K., Hilout, S.: Improved local convergence of Newton’s method under weak majorant condition, Journal of Computational and Applied Mathematics, 236(7), 1892–1902, 2012.
  • [7] Argyros, I., Hilout, S.: Numerical methods in nonlinear analysis, World Scientific Publ. Comp. New Jersey, USA, 2013.
  • [8] Ben-Israel, A., Greville, T.N.E.: Generalized inverses. CMS Books in Mathematics/Ouvrages de Mathematiques de la SMC, 15. Springer-Verlag, New York, second edition, Theory and Applications, 2003.
  • [9] Catinas, E.: The inexact, inexact perturbed, and quasi-Newton methods are equivalent models, Math. Comput. 74, 249, (2005), 291-301.
  • [10] Dedieu, J.P., Kim, M.H.: Newton’s method for analytic systems of equations with constant rank derivatives. J. Complexity, 18(1): 187-209, 2002.
  • [11] Ferreira, O.P., Gonc¸alves, M.L.N, Oliveira, P.R.:, Local convergence analysis of inexact Gauss–Newton like methods under majorant condition, J. Complexity, 27(1), 111-125, 2011.
  • [12] Ferreira, O.P., Svaiter, B.F.: Kantorovich’s majorants principle for Newton’s method. Comput.Optim. Appl. 42(2), 213–229, 2009.
  • [13] Haussler, W.M.: A Kantorovich-type convergence analysis for the Gauss-Newton-method. Numer. Math. 48(1), 119–125, 1986.
  • [14] Gonc¸alves, M.L.N, Oliveira, P.R.:, Convergence of the Gauss- Newton method for a special class of systems of equations under a majorant condition, Optimization, 64, 3(2015), 577–594.
  • [15] Hu, N., Shen, W. and Li, C.: Kantorovich’s type theorems for systems of equations with constant rank derivatives, J. Comput. Appl.Math., 219(1): 110-122, 2008.
  • [16] Kantorovich, L.V., Akilov, G.P., Functional Analysis, Pergamon Press, Oxford, 1982.
  • [17] Li, C., Hu, N., Wang, J.: Convergence behavior of Gauss-Newton’s method and extensions of the Smale point estimate theory. J. Complex. 26(3), 268–295, 2010.
  • [18] Potra, F.A., Ptak, V.: Nondiscrete induction and iterative processes. Research notes in Mathematics, 103, Pitman(A´ovanced Publishing Program), Boston, MA, 1984.
  • [19] Smale, S., Newton’s method estimates from data at one point. The merging of disciplines: new directions in pure, applied, and computational mathematics (Laramie, Wyo., 1985), 185-196, Springer, New York, 1986.
  • [20] Wang, X.H., Convergence of Newton’s method and uniqueness of the solution of equations in Banach spaces, IMA J. Numer. Anal., 20 , 123–134, 2000.
Year 2018, Volume: 1 Issue: 2, 80 - 85, 30.09.2018
https://doi.org/10.33187/jmsm.432191

Abstract

References

  • [1] Argyros, I.: On the semilocal convergence of the Gauss-Newton method. Adv. Nonlinear Var.Inequal. 8(2), 93–99, 2005.
  • [2] Argyros, I., Hilout, S.: On the local convergence of the Gauss-Newton method. Punjab Univ. J.Math. 41, 23–33, 2009.
  • [3] Argyros, I., Hilout, S.: On the Gauss-Newton method. J. Appl. Math. Comput. 1–14, 2010.
  • [4] Argyros, I. K, Hilout, S.: Extending the applicability of the Gauss-Newton method under average Lipschitz-type conditions. Numer. Algorithms 58(1), 23–52, 2011.
  • [5] Argyros, I. K, S. George, Expanding the applicability of the Gauss-Newton method for a certain class of systems of equations, J. Numer.Anal. Approx. Theory, vol., 45(1), 3–13, (2016).
  • [6] Argyros, I. K., Hilout, S.: Improved local convergence of Newton’s method under weak majorant condition, Journal of Computational and Applied Mathematics, 236(7), 1892–1902, 2012.
  • [7] Argyros, I., Hilout, S.: Numerical methods in nonlinear analysis, World Scientific Publ. Comp. New Jersey, USA, 2013.
  • [8] Ben-Israel, A., Greville, T.N.E.: Generalized inverses. CMS Books in Mathematics/Ouvrages de Mathematiques de la SMC, 15. Springer-Verlag, New York, second edition, Theory and Applications, 2003.
  • [9] Catinas, E.: The inexact, inexact perturbed, and quasi-Newton methods are equivalent models, Math. Comput. 74, 249, (2005), 291-301.
  • [10] Dedieu, J.P., Kim, M.H.: Newton’s method for analytic systems of equations with constant rank derivatives. J. Complexity, 18(1): 187-209, 2002.
  • [11] Ferreira, O.P., Gonc¸alves, M.L.N, Oliveira, P.R.:, Local convergence analysis of inexact Gauss–Newton like methods under majorant condition, J. Complexity, 27(1), 111-125, 2011.
  • [12] Ferreira, O.P., Svaiter, B.F.: Kantorovich’s majorants principle for Newton’s method. Comput.Optim. Appl. 42(2), 213–229, 2009.
  • [13] Haussler, W.M.: A Kantorovich-type convergence analysis for the Gauss-Newton-method. Numer. Math. 48(1), 119–125, 1986.
  • [14] Gonc¸alves, M.L.N, Oliveira, P.R.:, Convergence of the Gauss- Newton method for a special class of systems of equations under a majorant condition, Optimization, 64, 3(2015), 577–594.
  • [15] Hu, N., Shen, W. and Li, C.: Kantorovich’s type theorems for systems of equations with constant rank derivatives, J. Comput. Appl.Math., 219(1): 110-122, 2008.
  • [16] Kantorovich, L.V., Akilov, G.P., Functional Analysis, Pergamon Press, Oxford, 1982.
  • [17] Li, C., Hu, N., Wang, J.: Convergence behavior of Gauss-Newton’s method and extensions of the Smale point estimate theory. J. Complex. 26(3), 268–295, 2010.
  • [18] Potra, F.A., Ptak, V.: Nondiscrete induction and iterative processes. Research notes in Mathematics, 103, Pitman(A´ovanced Publishing Program), Boston, MA, 1984.
  • [19] Smale, S., Newton’s method estimates from data at one point. The merging of disciplines: new directions in pure, applied, and computational mathematics (Laramie, Wyo., 1985), 185-196, Springer, New York, 1986.
  • [20] Wang, X.H., Convergence of Newton’s method and uniqueness of the solution of equations in Banach spaces, IMA J. Numer. Anal., 20 , 123–134, 2000.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

İoannis K Argyros This is me

Santhosh George

Publication Date September 30, 2018
Submission Date June 8, 2018
Acceptance Date September 13, 2018
Published in Issue Year 2018 Volume: 1 Issue: 2

Cite

APA Argyros, İ. K., & George, S. (2018). Improved semi-local convergence of the Gauss-Newton method for systems of equations. Journal of Mathematical Sciences and Modelling, 1(2), 80-85. https://doi.org/10.33187/jmsm.432191
AMA Argyros İK, George S. Improved semi-local convergence of the Gauss-Newton method for systems of equations. Journal of Mathematical Sciences and Modelling. September 2018;1(2):80-85. doi:10.33187/jmsm.432191
Chicago Argyros, İoannis K, and Santhosh George. “Improved Semi-Local Convergence of the Gauss-Newton Method for Systems of Equations”. Journal of Mathematical Sciences and Modelling 1, no. 2 (September 2018): 80-85. https://doi.org/10.33187/jmsm.432191.
EndNote Argyros İK, George S (September 1, 2018) Improved semi-local convergence of the Gauss-Newton method for systems of equations. Journal of Mathematical Sciences and Modelling 1 2 80–85.
IEEE İ. K. Argyros and S. George, “Improved semi-local convergence of the Gauss-Newton method for systems of equations”, Journal of Mathematical Sciences and Modelling, vol. 1, no. 2, pp. 80–85, 2018, doi: 10.33187/jmsm.432191.
ISNAD Argyros, İoannis K - George, Santhosh. “Improved Semi-Local Convergence of the Gauss-Newton Method for Systems of Equations”. Journal of Mathematical Sciences and Modelling 1/2 (September 2018), 80-85. https://doi.org/10.33187/jmsm.432191.
JAMA Argyros İK, George S. Improved semi-local convergence of the Gauss-Newton method for systems of equations. Journal of Mathematical Sciences and Modelling. 2018;1:80–85.
MLA Argyros, İoannis K and Santhosh George. “Improved Semi-Local Convergence of the Gauss-Newton Method for Systems of Equations”. Journal of Mathematical Sciences and Modelling, vol. 1, no. 2, 2018, pp. 80-85, doi:10.33187/jmsm.432191.
Vancouver Argyros İK, George S. Improved semi-local convergence of the Gauss-Newton method for systems of equations. Journal of Mathematical Sciences and Modelling. 2018;1(2):80-5.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.