Research Article
BibTex RIS Cite
Year 2020, Volume: 3 Issue: 1, 38 - 46, 24.04.2020
https://doi.org/10.33187/jmsm.561172

Abstract

References

  • [1] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, 1997.
  • [2] A. J. Jerri, Introduction to Integral Equations with Applications, John Wiley and Sons, INC, 1999.
  • [3] M. Fallahpour, M. Khodabin, K. Maleknejad, Approximation solution of two-dimensional linear stochastic Volterra-Fredholm integral equation via two-dimensional Block-pulse functions, Int. J. Indus. Math., 8(4) (2016), IJIM-00774.
  • [4] M. Fallahpour, M. Khodabin, K. Maleknejad, Approximation solution of two-dimensional linear stochastic fredholm integral equation by applying the Haar wavelet, Math. Model. Comp., 5 (2015), 361- 372.
  • [5] M. Fallahpour, M. Khodabin, K. Maleknejad, Theoretical error analysis and validation in numerical solution of two-dimensional linear stochastic Volterra–Fredholm integral equation by applying the block-pulse functions, Cog. Math., 4 (2017), 1296750.
  • [6] M. Fallahpour, M. Khodabin, R. Ezzati, A new computational method based on Bernstein operational matrices for solving two-dimensional Linear stochastic Volterra integral equations, Differ. Equat. Dynam. Syst., (2019), doi.org/10.1007/s12591-019-00474-y.
  • [7] M. Fallahpour, M. Khodabin, K. Maleknejad, Theoretical error analysis of solution for two-dimensional stochastic Volterra integral equations by Haar wavelet, Int. J. Appl. Comput. Math, (2019), doi.org/10.1007/s40819-019-0739-3.
  • [8] F. Mirzaee, E. Hadadiyan, Using modified two-dimensional block-pulse functions for the numerical solution of nonlinear two-dimensional Volterra integral equations, J. Hyperst., 3(1) (2014), 68-80.
  • [9] K. Maleknejad, B. Rahimi, Modification of block pulse functions and their application to solve numerically Volterra integral equation of the first kind, Com. Non. Sci. Num. Sim, 16 (2011), 2469-2477.
  • [10] K. Maleknejad, S. Sohrabi, B. Baranji, Two-dimensional PCBFs: Application to nonlinear Volterra integral equations, Proce. Wor. Cong. Engin., (2009), Vol II WCE 2009, July 1 - 3.
  • [11] Z. H. Jiang, W. Schaufelberger, Block Pulse Functions and Their Applications in Control Systems, Springer-Verlag, 1992.
  • [12] K. Maleknejad, M. Khodabin, F. Hosseini Shekarabi, Modified block pulse functions for numerical solution of stochastic Volterra integral equations, Appl. Math., (2014), doi. org/10.1155/2014/469308.
  • [13] F. Mirzaee, E. Hadadiyan, Approximate solutions for mixed nonlinear Volterra–Fredholm type integral equations via modified block-pulse functions, J. Assoc. Arab. Uni. Bas. Appl. Sci., 12 (2012), 65–73.

Modified Block-Pulse Functions Scheme for Solve of Two-Dimensional Stochastic Integral Equations

Year 2020, Volume: 3 Issue: 1, 38 - 46, 24.04.2020
https://doi.org/10.33187/jmsm.561172

Abstract

In this paper, two-dimensional modified block-pulse functions (2D-MBPFs) method is introduced for approximate solution of 2D-linear stochastic Volterra-Fredholm integral equations so the ordinary and stochastic operrational matrices of integration are utilized to reduce the computation of such equations into some algebraic equations. Convergence analysis of this method is discussed. Finally an illustrative example is given to show the accuracy of the proposed method so the results of it is compared with the block-pulse functions (BPFs) method.

References

  • [1] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, 1997.
  • [2] A. J. Jerri, Introduction to Integral Equations with Applications, John Wiley and Sons, INC, 1999.
  • [3] M. Fallahpour, M. Khodabin, K. Maleknejad, Approximation solution of two-dimensional linear stochastic Volterra-Fredholm integral equation via two-dimensional Block-pulse functions, Int. J. Indus. Math., 8(4) (2016), IJIM-00774.
  • [4] M. Fallahpour, M. Khodabin, K. Maleknejad, Approximation solution of two-dimensional linear stochastic fredholm integral equation by applying the Haar wavelet, Math. Model. Comp., 5 (2015), 361- 372.
  • [5] M. Fallahpour, M. Khodabin, K. Maleknejad, Theoretical error analysis and validation in numerical solution of two-dimensional linear stochastic Volterra–Fredholm integral equation by applying the block-pulse functions, Cog. Math., 4 (2017), 1296750.
  • [6] M. Fallahpour, M. Khodabin, R. Ezzati, A new computational method based on Bernstein operational matrices for solving two-dimensional Linear stochastic Volterra integral equations, Differ. Equat. Dynam. Syst., (2019), doi.org/10.1007/s12591-019-00474-y.
  • [7] M. Fallahpour, M. Khodabin, K. Maleknejad, Theoretical error analysis of solution for two-dimensional stochastic Volterra integral equations by Haar wavelet, Int. J. Appl. Comput. Math, (2019), doi.org/10.1007/s40819-019-0739-3.
  • [8] F. Mirzaee, E. Hadadiyan, Using modified two-dimensional block-pulse functions for the numerical solution of nonlinear two-dimensional Volterra integral equations, J. Hyperst., 3(1) (2014), 68-80.
  • [9] K. Maleknejad, B. Rahimi, Modification of block pulse functions and their application to solve numerically Volterra integral equation of the first kind, Com. Non. Sci. Num. Sim, 16 (2011), 2469-2477.
  • [10] K. Maleknejad, S. Sohrabi, B. Baranji, Two-dimensional PCBFs: Application to nonlinear Volterra integral equations, Proce. Wor. Cong. Engin., (2009), Vol II WCE 2009, July 1 - 3.
  • [11] Z. H. Jiang, W. Schaufelberger, Block Pulse Functions and Their Applications in Control Systems, Springer-Verlag, 1992.
  • [12] K. Maleknejad, M. Khodabin, F. Hosseini Shekarabi, Modified block pulse functions for numerical solution of stochastic Volterra integral equations, Appl. Math., (2014), doi. org/10.1155/2014/469308.
  • [13] F. Mirzaee, E. Hadadiyan, Approximate solutions for mixed nonlinear Volterra–Fredholm type integral equations via modified block-pulse functions, J. Assoc. Arab. Uni. Bas. Appl. Sci., 12 (2012), 65–73.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Mohsen Fallahpour This is me 0000-0001-6113-2208

Morteza Khodabin 0000-0001-6113-2208

Publication Date April 24, 2020
Submission Date May 7, 2019
Acceptance Date April 20, 2020
Published in Issue Year 2020 Volume: 3 Issue: 1

Cite

APA Fallahpour, M., & Khodabin, M. (2020). Modified Block-Pulse Functions Scheme for Solve of Two-Dimensional Stochastic Integral Equations. Journal of Mathematical Sciences and Modelling, 3(1), 38-46. https://doi.org/10.33187/jmsm.561172
AMA Fallahpour M, Khodabin M. Modified Block-Pulse Functions Scheme for Solve of Two-Dimensional Stochastic Integral Equations. Journal of Mathematical Sciences and Modelling. April 2020;3(1):38-46. doi:10.33187/jmsm.561172
Chicago Fallahpour, Mohsen, and Morteza Khodabin. “Modified Block-Pulse Functions Scheme for Solve of Two-Dimensional Stochastic Integral Equations”. Journal of Mathematical Sciences and Modelling 3, no. 1 (April 2020): 38-46. https://doi.org/10.33187/jmsm.561172.
EndNote Fallahpour M, Khodabin M (April 1, 2020) Modified Block-Pulse Functions Scheme for Solve of Two-Dimensional Stochastic Integral Equations. Journal of Mathematical Sciences and Modelling 3 1 38–46.
IEEE M. Fallahpour and M. Khodabin, “Modified Block-Pulse Functions Scheme for Solve of Two-Dimensional Stochastic Integral Equations”, Journal of Mathematical Sciences and Modelling, vol. 3, no. 1, pp. 38–46, 2020, doi: 10.33187/jmsm.561172.
ISNAD Fallahpour, Mohsen - Khodabin, Morteza. “Modified Block-Pulse Functions Scheme for Solve of Two-Dimensional Stochastic Integral Equations”. Journal of Mathematical Sciences and Modelling 3/1 (April 2020), 38-46. https://doi.org/10.33187/jmsm.561172.
JAMA Fallahpour M, Khodabin M. Modified Block-Pulse Functions Scheme for Solve of Two-Dimensional Stochastic Integral Equations. Journal of Mathematical Sciences and Modelling. 2020;3:38–46.
MLA Fallahpour, Mohsen and Morteza Khodabin. “Modified Block-Pulse Functions Scheme for Solve of Two-Dimensional Stochastic Integral Equations”. Journal of Mathematical Sciences and Modelling, vol. 3, no. 1, 2020, pp. 38-46, doi:10.33187/jmsm.561172.
Vancouver Fallahpour M, Khodabin M. Modified Block-Pulse Functions Scheme for Solve of Two-Dimensional Stochastic Integral Equations. Journal of Mathematical Sciences and Modelling. 2020;3(1):38-46.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.