Research Article
BibTex RIS Cite
Year 2020, Volume: 3 Issue: 2, 86 - 94, 31.08.2020
https://doi.org/10.33187/jmsm.634089

Abstract

References

  • [1] G.I. El-Baghdady, M.S. El-Azab, Numerical solution of one dimensional advection-diffusion equation with variable coefficients via Legendre-Gauss- Lobatto time-space pseudo spectral method, Electron. J. Math. Anal. Appl., 3(2) (2015), 1-14.
  • [2] G.I. El-Baghdady, M.S. El-Azab, Chebyshev-Gauss-Lobatto Pseudo-spectral method for one-dimensional advection-diffusion equation with variable coefficients, Sohag J. Math., 3(1) (2016), 1-8.
  • [3] C. Canuto, A. Quarteroni, Spectral and pseudo-spectral methods for parabolic problems with non periodic boundary conditions , Calcolo, 18(3) (1981), 197-217.
  • [4] J. Shen, T. Tang, L. Wang, Spectral Methods Algorithms Analysis and Applications, Springer Series in Computational Mathematics, 41, Springer-Verlag Berlin Heidelberg, Germany, 2011.
  • [5] L. N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadelphia, 2000.
  • [6] R. Baltensperger, M. R. Trummer, Spectral differencing with a twist, SIAM J. Sci. Comput., 24(5) (2006), 1465-1487.
  • [7] A. Kufner, O. John, S. Fuˇcik, Function Spaces (Mechanics: Analysis), Noordhoff International Publishing, Netherlands, 1977.
  • [8] R. A. Horn, Ch. R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, UK, 2013.
  • [9] D. S1. Tracy, R. P. Singh, A new matrix product and its applications in matrix differentiation, Stat. Neerl., 26(4) (1972),143-157.
  • [10] T. Tang, X. Xu, J. Cheng, On spectral methods for Volterra integral equations and the convergence analysis, J. Comput. Math., 26(6) (2008), 825-837.
  • [11] J. Rauch, Partial Differential Equations, Springer-Verlag, New York Inc., USA, 1991.

A Highly Approximate Pseudo-Spectral Method for the Solution of Convection-Diffusion Equations

Year 2020, Volume: 3 Issue: 2, 86 - 94, 31.08.2020
https://doi.org/10.33187/jmsm.634089

Abstract

The main purpose of this paper is to compute a highly accurate numerical solution of two dimensional convection--diffusion equations with variable coefficients by using Legendre pseudo-spectral method based on Legendre-Gauss-Lobatto nodes. The Kronecker product is used here to formulate a linear system of differentiation matrices; this system was reduced to be more accurate with less memory usage. Error analysis with test problems are introduced to show that the suggested scheme of the spectral method has high accuracy.

References

  • [1] G.I. El-Baghdady, M.S. El-Azab, Numerical solution of one dimensional advection-diffusion equation with variable coefficients via Legendre-Gauss- Lobatto time-space pseudo spectral method, Electron. J. Math. Anal. Appl., 3(2) (2015), 1-14.
  • [2] G.I. El-Baghdady, M.S. El-Azab, Chebyshev-Gauss-Lobatto Pseudo-spectral method for one-dimensional advection-diffusion equation with variable coefficients, Sohag J. Math., 3(1) (2016), 1-8.
  • [3] C. Canuto, A. Quarteroni, Spectral and pseudo-spectral methods for parabolic problems with non periodic boundary conditions , Calcolo, 18(3) (1981), 197-217.
  • [4] J. Shen, T. Tang, L. Wang, Spectral Methods Algorithms Analysis and Applications, Springer Series in Computational Mathematics, 41, Springer-Verlag Berlin Heidelberg, Germany, 2011.
  • [5] L. N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadelphia, 2000.
  • [6] R. Baltensperger, M. R. Trummer, Spectral differencing with a twist, SIAM J. Sci. Comput., 24(5) (2006), 1465-1487.
  • [7] A. Kufner, O. John, S. Fuˇcik, Function Spaces (Mechanics: Analysis), Noordhoff International Publishing, Netherlands, 1977.
  • [8] R. A. Horn, Ch. R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, UK, 2013.
  • [9] D. S1. Tracy, R. P. Singh, A new matrix product and its applications in matrix differentiation, Stat. Neerl., 26(4) (1972),143-157.
  • [10] T. Tang, X. Xu, J. Cheng, On spectral methods for Volterra integral equations and the convergence analysis, J. Comput. Math., 26(6) (2008), 825-837.
  • [11] J. Rauch, Partial Differential Equations, Springer-Verlag, New York Inc., USA, 1991.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Magdi El-azab This is me 0000-0003-2885-107X

Rabha El-ashwah This is me 0000-0002-5490-3745

Maha Abbas 0000-0003-1549-9302

Galal El-baghdady This is me 0000-0001-5317-5195

Publication Date August 31, 2020
Submission Date October 16, 2019
Acceptance Date July 21, 2020
Published in Issue Year 2020 Volume: 3 Issue: 2

Cite

APA El-azab, M., El-ashwah, R., Abbas, M., El-baghdady, G. (2020). A Highly Approximate Pseudo-Spectral Method for the Solution of Convection-Diffusion Equations. Journal of Mathematical Sciences and Modelling, 3(2), 86-94. https://doi.org/10.33187/jmsm.634089
AMA El-azab M, El-ashwah R, Abbas M, El-baghdady G. A Highly Approximate Pseudo-Spectral Method for the Solution of Convection-Diffusion Equations. Journal of Mathematical Sciences and Modelling. August 2020;3(2):86-94. doi:10.33187/jmsm.634089
Chicago El-azab, Magdi, Rabha El-ashwah, Maha Abbas, and Galal El-baghdady. “A Highly Approximate Pseudo-Spectral Method for the Solution of Convection-Diffusion Equations”. Journal of Mathematical Sciences and Modelling 3, no. 2 (August 2020): 86-94. https://doi.org/10.33187/jmsm.634089.
EndNote El-azab M, El-ashwah R, Abbas M, El-baghdady G (August 1, 2020) A Highly Approximate Pseudo-Spectral Method for the Solution of Convection-Diffusion Equations. Journal of Mathematical Sciences and Modelling 3 2 86–94.
IEEE M. El-azab, R. El-ashwah, M. Abbas, and G. El-baghdady, “A Highly Approximate Pseudo-Spectral Method for the Solution of Convection-Diffusion Equations”, Journal of Mathematical Sciences and Modelling, vol. 3, no. 2, pp. 86–94, 2020, doi: 10.33187/jmsm.634089.
ISNAD El-azab, Magdi et al. “A Highly Approximate Pseudo-Spectral Method for the Solution of Convection-Diffusion Equations”. Journal of Mathematical Sciences and Modelling 3/2 (August 2020), 86-94. https://doi.org/10.33187/jmsm.634089.
JAMA El-azab M, El-ashwah R, Abbas M, El-baghdady G. A Highly Approximate Pseudo-Spectral Method for the Solution of Convection-Diffusion Equations. Journal of Mathematical Sciences and Modelling. 2020;3:86–94.
MLA El-azab, Magdi et al. “A Highly Approximate Pseudo-Spectral Method for the Solution of Convection-Diffusion Equations”. Journal of Mathematical Sciences and Modelling, vol. 3, no. 2, 2020, pp. 86-94, doi:10.33187/jmsm.634089.
Vancouver El-azab M, El-ashwah R, Abbas M, El-baghdady G. A Highly Approximate Pseudo-Spectral Method for the Solution of Convection-Diffusion Equations. Journal of Mathematical Sciences and Modelling. 2020;3(2):86-94.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.