Research Article
BibTex RIS Cite

Asymptotic Bound for RSA Variant with Three Decryption Exponents

Year 2023, Volume: 6 Issue: 1, 1 - 6, 30.04.2023
https://doi.org/10.33187/jmsm.1135988

Abstract

This paper presents a cryptanalysis attack on the RSA variant with modulus $N=p^rq$ for $r\geq 2$ with three public and private exponents $(e_1,d_1),$ $(e_2,d_2),$ $(e_3,d_3)$ sharing the same modulus $N$ where $p$ and $q$ are consider to prime having the same bit size. Our attack shows that we get the private exponent $\sigma_1\sigma_2\sigma_3<\left(\frac{r-1}{r+1}\right)^4$, which makes the modulus vulnerable to Coppersmith's attacks and can lead to the factorization of $N$ efficiently
where $d_1 The asymptotic bound of our attack is greater than the bounds for May \cite{May}, Zheng and Hu \cite{Z}, and Lu et al. \cite{Y} for $2\leq r \leq 10$ and greater than Sarkar's \cite{Sarkar1} and \cite{Sarkar} bounds for $5 \leq r \leq10$.

Thanks

I want to appreciate you for giving me this opportunity to submit my article into your reputable journal. I hope you will find our work suitable for publication in this journal. Thank you

References

  • [1] A. May, Secret exponent attacks on RSA-type schemes with moduli N = prq, Proceedings of 7th International Workshop on Theory and Practice in Public Key Cryptography, (2004), 218-230.
  • [2] M. Zheng, H. Hu, Cryptanalysis of prime power RSA with two private exponents, Sci. China Inf. Sci., 58 (2015), 8 pages.
  • [3] Y. Lu, R. Zhang, L. Peng, D. Lin, Solving linear equations modulo unknown divisors: Revisited, International Conference in the Theory and Application of Cryptology and Information Security, (2015), 189-213.
  • [4] S. Sarkar, Small secret exponent attack on RSA variant with modulus N = prq, Des. Codes Cryptogr. 73(2) (2014), 383-392.
  • [5] S. Sarkar, Revisiting Prime Power RSA, Discrete Applied Mathematics, 203 (2016), 127-133.
  • [6] R. L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Commun. ACM, 21 (1978), 120-126.
  • [7] M. Wiener, Cryptanalysis of short RSA secret exponents, IEEE Trans. Inf. Theory, 36(3) (1990), 553-558.
  • [8] S. I. Abubakar, M. R. K. Ariffin, M. A. Asbullah, A new simultaneous diophantine attack upon RSA moduli N = pq, In Cryptology and Information Security Conference, (2018), 119-131.
  • [9] M. K. R. Ariffin, S. I. Abubakar, F. Yunos, M. A. Asbullah, New cryptanalytic attack on RSA modulus N = pq using small prime difference method, Cryptography, 3(1) (2019), 2.
  • [10] T. Takagi, Fast RSA-type cryptosystem modulo pkq, Advances in Cryptology-CRYPTO, 1998 (1998), 318-326.
  • [11] D. Boneh, G. Durfee, N. Howgrave-Graham, Factoring N = prq for large r, Proceedings of 19th Annual International Cryptology Conference, (1990) (1990), 326-337.
  • [12] A. Takayasu, N. Kunihiro, Better lattice construction for solving multivariate linear equations modulo unknown divisors, Proceedings of the 18th Australian Conference (ACISP 2013), (2013), 118-135.
  • [13] A. Nitaj, Diophantine and lattice cryptanalysis of the RSA cryptosystem, Artificial Intelligence, Evolutionary Computing and Metaheuristics, (2013), 139-168.
  • [14] A. K. Lenstra, H. W. Lenstra, L. Lovasz, Factoring polynomials with rational coefficients, Math. Ann., 261 (1982), 513-534.
  • [15] N. Howgrave-Graham, Finding small roots of univariate modular equations revisited, Darnell M. Cryptography and Coding, (1997), 131-142.
Year 2023, Volume: 6 Issue: 1, 1 - 6, 30.04.2023
https://doi.org/10.33187/jmsm.1135988

Abstract

References

  • [1] A. May, Secret exponent attacks on RSA-type schemes with moduli N = prq, Proceedings of 7th International Workshop on Theory and Practice in Public Key Cryptography, (2004), 218-230.
  • [2] M. Zheng, H. Hu, Cryptanalysis of prime power RSA with two private exponents, Sci. China Inf. Sci., 58 (2015), 8 pages.
  • [3] Y. Lu, R. Zhang, L. Peng, D. Lin, Solving linear equations modulo unknown divisors: Revisited, International Conference in the Theory and Application of Cryptology and Information Security, (2015), 189-213.
  • [4] S. Sarkar, Small secret exponent attack on RSA variant with modulus N = prq, Des. Codes Cryptogr. 73(2) (2014), 383-392.
  • [5] S. Sarkar, Revisiting Prime Power RSA, Discrete Applied Mathematics, 203 (2016), 127-133.
  • [6] R. L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Commun. ACM, 21 (1978), 120-126.
  • [7] M. Wiener, Cryptanalysis of short RSA secret exponents, IEEE Trans. Inf. Theory, 36(3) (1990), 553-558.
  • [8] S. I. Abubakar, M. R. K. Ariffin, M. A. Asbullah, A new simultaneous diophantine attack upon RSA moduli N = pq, In Cryptology and Information Security Conference, (2018), 119-131.
  • [9] M. K. R. Ariffin, S. I. Abubakar, F. Yunos, M. A. Asbullah, New cryptanalytic attack on RSA modulus N = pq using small prime difference method, Cryptography, 3(1) (2019), 2.
  • [10] T. Takagi, Fast RSA-type cryptosystem modulo pkq, Advances in Cryptology-CRYPTO, 1998 (1998), 318-326.
  • [11] D. Boneh, G. Durfee, N. Howgrave-Graham, Factoring N = prq for large r, Proceedings of 19th Annual International Cryptology Conference, (1990) (1990), 326-337.
  • [12] A. Takayasu, N. Kunihiro, Better lattice construction for solving multivariate linear equations modulo unknown divisors, Proceedings of the 18th Australian Conference (ACISP 2013), (2013), 118-135.
  • [13] A. Nitaj, Diophantine and lattice cryptanalysis of the RSA cryptosystem, Artificial Intelligence, Evolutionary Computing and Metaheuristics, (2013), 139-168.
  • [14] A. K. Lenstra, H. W. Lenstra, L. Lovasz, Factoring polynomials with rational coefficients, Math. Ann., 261 (1982), 513-534.
  • [15] N. Howgrave-Graham, Finding small roots of univariate modular equations revisited, Darnell M. Cryptography and Coding, (1997), 131-142.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Saıdu Isah Abubakar 0000-0002-0201-0064

Ibrahim Zaid 0000-0002-0251-6495

Amınu Alhajı Ibrahım 0000-0001-5957-3223

Publication Date April 30, 2023
Submission Date June 26, 2022
Acceptance Date October 4, 2022
Published in Issue Year 2023 Volume: 6 Issue: 1

Cite

APA Isah Abubakar, S., Zaid, I., & Alhajı Ibrahım, A. (2023). Asymptotic Bound for RSA Variant with Three Decryption Exponents. Journal of Mathematical Sciences and Modelling, 6(1), 1-6. https://doi.org/10.33187/jmsm.1135988
AMA Isah Abubakar S, Zaid I, Alhajı Ibrahım A. Asymptotic Bound for RSA Variant with Three Decryption Exponents. Journal of Mathematical Sciences and Modelling. April 2023;6(1):1-6. doi:10.33187/jmsm.1135988
Chicago Isah Abubakar, Saıdu, Ibrahim Zaid, and Amınu Alhajı Ibrahım. “Asymptotic Bound for RSA Variant With Three Decryption Exponents”. Journal of Mathematical Sciences and Modelling 6, no. 1 (April 2023): 1-6. https://doi.org/10.33187/jmsm.1135988.
EndNote Isah Abubakar S, Zaid I, Alhajı Ibrahım A (April 1, 2023) Asymptotic Bound for RSA Variant with Three Decryption Exponents. Journal of Mathematical Sciences and Modelling 6 1 1–6.
IEEE S. Isah Abubakar, I. Zaid, and A. Alhajı Ibrahım, “Asymptotic Bound for RSA Variant with Three Decryption Exponents”, Journal of Mathematical Sciences and Modelling, vol. 6, no. 1, pp. 1–6, 2023, doi: 10.33187/jmsm.1135988.
ISNAD Isah Abubakar, Saıdu et al. “Asymptotic Bound for RSA Variant With Three Decryption Exponents”. Journal of Mathematical Sciences and Modelling 6/1 (April 2023), 1-6. https://doi.org/10.33187/jmsm.1135988.
JAMA Isah Abubakar S, Zaid I, Alhajı Ibrahım A. Asymptotic Bound for RSA Variant with Three Decryption Exponents. Journal of Mathematical Sciences and Modelling. 2023;6:1–6.
MLA Isah Abubakar, Saıdu et al. “Asymptotic Bound for RSA Variant With Three Decryption Exponents”. Journal of Mathematical Sciences and Modelling, vol. 6, no. 1, 2023, pp. 1-6, doi:10.33187/jmsm.1135988.
Vancouver Isah Abubakar S, Zaid I, Alhajı Ibrahım A. Asymptotic Bound for RSA Variant with Three Decryption Exponents. Journal of Mathematical Sciences and Modelling. 2023;6(1):1-6.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.