DNA Secret Writing With Laplace Transform of Mittag-Leffler Function
Year 2023,
Volume: 6 Issue: 3, 120 - 132, 21.12.2023
Mehmet Çağrı Yılmazer
,
Emrah Yılmaz
,
Tuba Gulsen
,
Mikail Et
Abstract
In this study, we present a new cryptosystem named Deoxyribose Nucleic Acid (DNA) secret writing with the Laplace transform of the Mittag-Leffler function. The method is proper for encrypting large files. In this technique, we consider the original message as binary sequence. These binary streams corresponding to the plain text is transformed to DNA bases by utilizing DNA encoding, then the DNA codes are transformed to positive integers. We apply the Laplace transform to these numbers which are coefficients of the expansion of the Mittag-Leffler function. To provide multi-stage protection, the outcome coefficients are transformed to binary sequences and other level of encryption with cumulative XOR is applied and equivalent MSBs obtained at every iteration are utilized for building cipher text. Decryption is implemented in the opposite way. We employ monobit test, correlation analysis for measuring the reliability of encryption, and Python programming language to obtain secret message, the plain text, and computations of statistical tests.
References
- [1] G. N. Lakshmi, B.R. Kumar, A.C. Sekhar, A cryptographic scheme of Laplace transforms, Int. J. Math. Arch., 2 (12) (2011), 2515-2519.
- [2] A. P. Stakhov, The golden section in the measurement theory, Comput. Math. Appl., 17 (4-6) (1989), 613–638.
- [3] A. P. Stakhov, The ”golden” matrices and a new kind of cryptography, Chaos, Solit. Fractals, 32 (3) (2007), 1138–1146.
- [4] T. H. Barr, Invitation to Cryptology, Pearson, Prentice Hall, 2002.
- [5] J. A. Buchmann, Introduction to Cryptography, New York, Springer, 2009.
- [6] E. Cole, R. Krutz, J.W. Conley, Network Security Bible, Indianapolis, Wiley Publishing, 2009.
- [7] W. Stallings, Network Security Essentials: Applications and Standards, Boston, Prentice Hall, 2001.
- [8] W. Stallings, Cryptography and Network Security, London, Pearson Education Ltd, 2005.
- [9] A. Stanoyevitch, Introduction to Cryptography with Mathematical Foundations and Computer Implementations, Boca Raton, CRC Press, 2010.
- [10] Z. M. Z Muhammad, F. Özkaynak, Security problems of chaotic image encryption algorithms based on cryptanalysis driven design technique, IEEE Access, 7 (2019), 99945-99953.
- [11] F. Ö zkaynak, A. B. Özer, Cryptanalysis of a new image encryption algorithm based on chaos, Optik, 127 (13) (2016), 5190-5192.
- [12] G. A. Dhanorkar, A. P. Hiwarekar, A generalized Hill cipher using matrix transformation, Int. J. Math. Sci. Eng. Appl., 5 (4) (2011), 19-23.
- [13] J. Overbey, W. Traves, J. Wojdylo, On the keyspace of the Hill cipher, Cryptologia, 29 (1) (2005), 59-72.
- [14] S. Saeednia, How to make the Hill cipher secure, Cryptologia, 24 (4) (2000), 353-360.
- [15] A. P. Hiwarekar, A new method of cryptography using Laplace transform, Int. J. Math. Arch., 3 (3) (2012), 1193-1197.
- [16] A. P. Hiwarekar, A new method of cryptography using Laplace transform of hyperbolic functions, Int. J. Math. Arch., 4 (2) (2013), 208-213.
- [17] A. P. Hiwarekar, Application of Laplace transform for cryptographic scheme, Proc. World Congr. Eng., 1 (2013), 1-6.
- [18] J. D. Watson, F.H.C. Crick, Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid, Am. J. Psychiatry, 160 (4) (2003), 623-624.
- [19] G. Cui, L. Qin, Y. Wang, X. Zhang, Information security technology based on DNA computing, ASID, (2007) 288-291.
- [20] G. Z. Cui, Y. Liu, X. Zhang, New direction of data storage: DNA molecular storage technology, Comput. Eng. Appl., 42 (26) (2006), 29-32.
- [21] X. Wang, Q. Zhang, DNA computing-based cryptography, Fourth Int. Conf. Bio-Inspired Comput., (2009), 1-3.
- [22] L. M. Adleman, Molecular computation of solutions to combinatorial problems, Science, 266 (5187) (1994) 1021-1024.
- [23] C. T. Clelland, V. Risca, C. Bancroft, Hiding messages in DNA microdots, Nature, 399 (6736) (1999), 533-534.
- [24] S. Som, M. Som, DNA secret writing with Laplace transform, Int. J. Comput. Appl., 975 (8887) (2012), 43-50.
- [25] R. J. Lipton, Using DNA to solve NP-complete problems. Science, 268 (4) (1995), 542-545.
- [26] S. T. Amin, M. Saeb M, S. El-Gindi, A DNA-based implementation of YAEA encryption algorithm, Comput. intel., (2006), 120-125.
- [27] D. G. Zill, Advanced Engineering Mathematics, Burlington, Jones & Bartlett Learning, 2020.
- [28] R. P. Boas Jr, Higher transcendental functions, Science, 122 (3163) (1955), 290-290.
- [29] I. Podlubny, Fractional Differential Equations, 198, San Diego, California, USA, Academic Press, 1999.
- [30] G. M. Mittag-Leffler, Sur la nouvelle fonction Ea (x), C. R. Acad. Sci. Paris, 137 (2) (1903), 554-558.
- [31] G.M. Mittag-Leffler, Sopra la funzione Ea (x), Rend. Acad. Dei Lincei, 13 (5) (1904), 3-5.
- [32] G. M. Mittag-Leffler, Sur la represention analytique d’une branche uniforme d’une fonction monog´ene, Acta Math., 29 (1) (1905), 101-181.
- [33] A. Wiman, Über den fundamentalsatz in der teorie der funktionen Ea (x), Acta Math., 29 (1) (1905), 191-201.
- [34] A. Wiman, Über die nulstellen der funktionen Ea (x), Acta Math., 29 (1) (1905), 217-234.
- [35] R. P. Agarwal, A propos d’une note de M Pierre Humbert, C. R. Acad. Sci., 236 (21) (1953), 2031-2032.
- [36] P. Humbert, R.P. Agarwal, Sur la fonction de Mittag-Leffler et quelques-unes de ses g´en´eralisitions, Bull. des Sci. Math., 77 (2) (1953), 180-185.
- [37] M. M. Dzhrbashyan, Integral Transforms and Representations of Functions in the Complex Domain, Moscow, Nauka (in Russian), 1966.
- [38] R. Garrappa, M. Popolizio, Computing the matrix Mittag-Leffler function with applications to fractional calculus, J. Sci. Comput., 77 (1) (2018), 129-153.
- [39] A. Ruk, A statistical test suite for the validation of random number generators and pseudo-random number generators for cryptographic applications, NIST, 2001.
- [40] H. Cramer, Mathematical Methods of Statistics, Princeton, Princeton Univ Press, 1946.
- [41] G. Nagalakshmi, A.C. Sekhar, N.R. Sankar, K. Venkateswarlu, Enhancing the data security by using RSA algorithm with application of Laplace transform cryptosystem, Int. J. Recent Technol. Eng., 8 (2) (2019), 6142-6147.
- [42] B. W. Matthews, Comparison of the predicted and observed secondary structure of T4 phage lysozyme, Biochim. Biophys. Acta (BBA)-Protein Struct., 405 (2) (1975), 442-451
Year 2023,
Volume: 6 Issue: 3, 120 - 132, 21.12.2023
Mehmet Çağrı Yılmazer
,
Emrah Yılmaz
,
Tuba Gulsen
,
Mikail Et
References
- [1] G. N. Lakshmi, B.R. Kumar, A.C. Sekhar, A cryptographic scheme of Laplace transforms, Int. J. Math. Arch., 2 (12) (2011), 2515-2519.
- [2] A. P. Stakhov, The golden section in the measurement theory, Comput. Math. Appl., 17 (4-6) (1989), 613–638.
- [3] A. P. Stakhov, The ”golden” matrices and a new kind of cryptography, Chaos, Solit. Fractals, 32 (3) (2007), 1138–1146.
- [4] T. H. Barr, Invitation to Cryptology, Pearson, Prentice Hall, 2002.
- [5] J. A. Buchmann, Introduction to Cryptography, New York, Springer, 2009.
- [6] E. Cole, R. Krutz, J.W. Conley, Network Security Bible, Indianapolis, Wiley Publishing, 2009.
- [7] W. Stallings, Network Security Essentials: Applications and Standards, Boston, Prentice Hall, 2001.
- [8] W. Stallings, Cryptography and Network Security, London, Pearson Education Ltd, 2005.
- [9] A. Stanoyevitch, Introduction to Cryptography with Mathematical Foundations and Computer Implementations, Boca Raton, CRC Press, 2010.
- [10] Z. M. Z Muhammad, F. Özkaynak, Security problems of chaotic image encryption algorithms based on cryptanalysis driven design technique, IEEE Access, 7 (2019), 99945-99953.
- [11] F. Ö zkaynak, A. B. Özer, Cryptanalysis of a new image encryption algorithm based on chaos, Optik, 127 (13) (2016), 5190-5192.
- [12] G. A. Dhanorkar, A. P. Hiwarekar, A generalized Hill cipher using matrix transformation, Int. J. Math. Sci. Eng. Appl., 5 (4) (2011), 19-23.
- [13] J. Overbey, W. Traves, J. Wojdylo, On the keyspace of the Hill cipher, Cryptologia, 29 (1) (2005), 59-72.
- [14] S. Saeednia, How to make the Hill cipher secure, Cryptologia, 24 (4) (2000), 353-360.
- [15] A. P. Hiwarekar, A new method of cryptography using Laplace transform, Int. J. Math. Arch., 3 (3) (2012), 1193-1197.
- [16] A. P. Hiwarekar, A new method of cryptography using Laplace transform of hyperbolic functions, Int. J. Math. Arch., 4 (2) (2013), 208-213.
- [17] A. P. Hiwarekar, Application of Laplace transform for cryptographic scheme, Proc. World Congr. Eng., 1 (2013), 1-6.
- [18] J. D. Watson, F.H.C. Crick, Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid, Am. J. Psychiatry, 160 (4) (2003), 623-624.
- [19] G. Cui, L. Qin, Y. Wang, X. Zhang, Information security technology based on DNA computing, ASID, (2007) 288-291.
- [20] G. Z. Cui, Y. Liu, X. Zhang, New direction of data storage: DNA molecular storage technology, Comput. Eng. Appl., 42 (26) (2006), 29-32.
- [21] X. Wang, Q. Zhang, DNA computing-based cryptography, Fourth Int. Conf. Bio-Inspired Comput., (2009), 1-3.
- [22] L. M. Adleman, Molecular computation of solutions to combinatorial problems, Science, 266 (5187) (1994) 1021-1024.
- [23] C. T. Clelland, V. Risca, C. Bancroft, Hiding messages in DNA microdots, Nature, 399 (6736) (1999), 533-534.
- [24] S. Som, M. Som, DNA secret writing with Laplace transform, Int. J. Comput. Appl., 975 (8887) (2012), 43-50.
- [25] R. J. Lipton, Using DNA to solve NP-complete problems. Science, 268 (4) (1995), 542-545.
- [26] S. T. Amin, M. Saeb M, S. El-Gindi, A DNA-based implementation of YAEA encryption algorithm, Comput. intel., (2006), 120-125.
- [27] D. G. Zill, Advanced Engineering Mathematics, Burlington, Jones & Bartlett Learning, 2020.
- [28] R. P. Boas Jr, Higher transcendental functions, Science, 122 (3163) (1955), 290-290.
- [29] I. Podlubny, Fractional Differential Equations, 198, San Diego, California, USA, Academic Press, 1999.
- [30] G. M. Mittag-Leffler, Sur la nouvelle fonction Ea (x), C. R. Acad. Sci. Paris, 137 (2) (1903), 554-558.
- [31] G.M. Mittag-Leffler, Sopra la funzione Ea (x), Rend. Acad. Dei Lincei, 13 (5) (1904), 3-5.
- [32] G. M. Mittag-Leffler, Sur la represention analytique d’une branche uniforme d’une fonction monog´ene, Acta Math., 29 (1) (1905), 101-181.
- [33] A. Wiman, Über den fundamentalsatz in der teorie der funktionen Ea (x), Acta Math., 29 (1) (1905), 191-201.
- [34] A. Wiman, Über die nulstellen der funktionen Ea (x), Acta Math., 29 (1) (1905), 217-234.
- [35] R. P. Agarwal, A propos d’une note de M Pierre Humbert, C. R. Acad. Sci., 236 (21) (1953), 2031-2032.
- [36] P. Humbert, R.P. Agarwal, Sur la fonction de Mittag-Leffler et quelques-unes de ses g´en´eralisitions, Bull. des Sci. Math., 77 (2) (1953), 180-185.
- [37] M. M. Dzhrbashyan, Integral Transforms and Representations of Functions in the Complex Domain, Moscow, Nauka (in Russian), 1966.
- [38] R. Garrappa, M. Popolizio, Computing the matrix Mittag-Leffler function with applications to fractional calculus, J. Sci. Comput., 77 (1) (2018), 129-153.
- [39] A. Ruk, A statistical test suite for the validation of random number generators and pseudo-random number generators for cryptographic applications, NIST, 2001.
- [40] H. Cramer, Mathematical Methods of Statistics, Princeton, Princeton Univ Press, 1946.
- [41] G. Nagalakshmi, A.C. Sekhar, N.R. Sankar, K. Venkateswarlu, Enhancing the data security by using RSA algorithm with application of Laplace transform cryptosystem, Int. J. Recent Technol. Eng., 8 (2) (2019), 6142-6147.
- [42] B. W. Matthews, Comparison of the predicted and observed secondary structure of T4 phage lysozyme, Biochim. Biophys. Acta (BBA)-Protein Struct., 405 (2) (1975), 442-451