Araştırma Makalesi
BibTex RIS Kaynak Göster

A Difference Equation of Banking Loan with Nonlinear Deposit Interest Rate

Yıl 2024, Cilt: 7 Sayı: 1, 14 - 19, 08.05.2024
https://doi.org/10.33187/jmsm.1396368

Öz

This paper considers a banking loan model using a difference equation with a nonlinear deposit interest rate. The construction of the model is based on a simple bank balance sheet composition and a gradient adjustment process. The model produces two unstable loan equilibriums and one stable equilibrium when the parameter corresponding to the deposit interest rate is situated between its transcritical and flip bifurcations. Some numerical simulations are presented to align with the analytical findings, such as the bifurcation diagram, Lyapunov exponent, cobweb diagram, and contour plot sensitivity. The significance of our result is that the banking regulator may consider the lower and upper bounds for setting the nonlinear interest rate regulation and provide a control regulation for other banking factors to maintain loan stability.

Kaynakça

  • [1] M. F. Ansori, S. Hariyanto, Analysis of banking deposit cost in the dynamics of loan: Bifurcation and chaos perspectives, BAREKENG: J. Math. App., 16(4) (2022), 1283-1292, doi:10.30598/barekengvol16iss4pp1283-1292.
  • [2] M. F. Ansori, S. Khabibah, The role of cost of loan in banking loan dynamics: Bifurcation and chaos analysis, BAREKENG: J. Math. App., 16(3) (2022), 1031-1038, doi:10.30598/barekengvol16iss3pp1031-1038.
  • [3] N. Y. Ashar, M. F. Ansori, H. K. Fata, The effects of capital policy on banking loan dynamics: A difference equation approach, Int. J. Differ. Equations (IJDE), 18(1) (2023), 267-279.
  • [4] H. K. Fata, N. Y. Ashar, M. F. Ansori, Banking loan dynamics with dividen payments, Adv. Dyn. Syst. Appl. (ADSA), 18(2) (2023), 87-99.
  • [5] M. F. Ansori, G. Theotista, Winson, Difference equation-based banking loan dynamics with reserve requirement policy, Int. J. Differ. Equations (IJDE), 18(1) (2023), 35-48.
  • [6] M. F. Ansori, N. Sumarti, K. A. Sidarto, I. Gunadi, Analyzing a macroprudential instrument during the COVID-19 pandemic using border collision bifurcation, Rect@: Rev. Electron. Commun. y Trabajos de ASEPUMA, 22(2) (2022), 113-125, doi: 10.24309/recta.2021.22.2.04.
  • [7] M. F. Ansori, G. Theotista, M. Febe, The influence of the amount of premium and membership of IDIC on banking loan procyclicality: A mathematical model, Adv. Dyn. Syst. Appl. (ADSA), 18(2) (2023), 111-123.
  • [8] M. F. Ansori, N. Y. Ashar, Analysis of loan benchmark interest rate in banking loan dynamics: bifurcation and sensitivity analysis, J. Math. Model. Finance, 3(1) (2023), 191-202, doi: 10.22054/jmmf.2023.74976.1098.
  • [9] L. Fanti, The dynamics of a banking duopoly with capital regulations, Econ. Model., 37 (2014), 340-349, doi: 10.1016/j.econmod.2013.11.010.
  • [10] S. Brianzoni, G. Campisi, Dynamical analysis of a banking duopoly model with capital regulation and asymmetric costs, Discrete Contin. Dyn. Syst. - B, 26 (2021), 5807-5825, doi: 10.3934/dcdsb.2021116.
  • [11] S. Brianzoni, G. Campisi, A. Colasante, Nonlinear banking duopoly model with capital regulation: The case of Italy, Chaos Solitons Fractals, 160 (2022), 112209, doi: 10.1016/j.chaos.2022.112209.
  • [12] G. A. Pfann, P. C. Schotman, R. Tschernig, Nonlinear interest rate dynamics and implications for the term structure, J. Econom., 74(1) (1996), 149-176, doi: 10.1016/0304-4076(95)01754-2.
  • [13] L. Ballester, R. Ferrer, C. Gonz´alez, Linear and nonlinear interest rate sensitivity of Spanish banks, The Spanish Rev. Financ. Econ., 9(2) (2011), 35-48, doi: 10.1016/j.srfe.2011.09.002.
  • [14] P. A. Shively, Threshold nonlinear interest rates, Econ. Lett., 88(3) (2005), 313-317, doi: 10.1016/j.econlet.2004.12.032.
  • [15] Y. Baaziz, M. Labidi, A. Lahiani, Does the South African reserve bank follow a nonlinear interest rate reaction function?, Econ. Model., 35 (2005), 272-282, doi: 10.1016/j.econmod.2013.07.014.
  • [16] R. Br¨uggemann, J. Riedel, Nonlinear interest rate reaction functions for the UK, Econ. Model., 28 (2011), 1174-1185, doi: 10.1016/j.econmod.2010.12.005.
  • [17] M. A. Klein, A theory of the banking firm, J. Money Credit Banking, 3 (1971), 205-218.
  • [18] M. Monti, Deposit, credit and interest rates determination under alternative objective functions, G. P. Szego, K. Shell (Eds.), Math. Methods Investment Finance, Amsterdam, 1972.
  • [19] M. G. I. Bischi, C. Chiarella, M. Kopel, F. Szidarovszky, Nonlinear Oligopolies: Stability and Bifurcations, Berlin: Springer-Verlag, 2010.
  • [20] S. Elaydi, An Introduction to Difference Equations, New York, NY, USA: Springer, 1996.
  • [21] K. Alligood, T. Sauer, J. Yorke, Chaos: An Introduction to Dynamical Systems, New York: Springer-Verlag, 1996.
  • [22] M. F. Ansori, N. Y. Ashar, H. K. Fata, Logistic map-based banking loan dynamics with central bank policies, J. Appl. Nonlinear Dyn., (2024), (in press).
Yıl 2024, Cilt: 7 Sayı: 1, 14 - 19, 08.05.2024
https://doi.org/10.33187/jmsm.1396368

Öz

Kaynakça

  • [1] M. F. Ansori, S. Hariyanto, Analysis of banking deposit cost in the dynamics of loan: Bifurcation and chaos perspectives, BAREKENG: J. Math. App., 16(4) (2022), 1283-1292, doi:10.30598/barekengvol16iss4pp1283-1292.
  • [2] M. F. Ansori, S. Khabibah, The role of cost of loan in banking loan dynamics: Bifurcation and chaos analysis, BAREKENG: J. Math. App., 16(3) (2022), 1031-1038, doi:10.30598/barekengvol16iss3pp1031-1038.
  • [3] N. Y. Ashar, M. F. Ansori, H. K. Fata, The effects of capital policy on banking loan dynamics: A difference equation approach, Int. J. Differ. Equations (IJDE), 18(1) (2023), 267-279.
  • [4] H. K. Fata, N. Y. Ashar, M. F. Ansori, Banking loan dynamics with dividen payments, Adv. Dyn. Syst. Appl. (ADSA), 18(2) (2023), 87-99.
  • [5] M. F. Ansori, G. Theotista, Winson, Difference equation-based banking loan dynamics with reserve requirement policy, Int. J. Differ. Equations (IJDE), 18(1) (2023), 35-48.
  • [6] M. F. Ansori, N. Sumarti, K. A. Sidarto, I. Gunadi, Analyzing a macroprudential instrument during the COVID-19 pandemic using border collision bifurcation, Rect@: Rev. Electron. Commun. y Trabajos de ASEPUMA, 22(2) (2022), 113-125, doi: 10.24309/recta.2021.22.2.04.
  • [7] M. F. Ansori, G. Theotista, M. Febe, The influence of the amount of premium and membership of IDIC on banking loan procyclicality: A mathematical model, Adv. Dyn. Syst. Appl. (ADSA), 18(2) (2023), 111-123.
  • [8] M. F. Ansori, N. Y. Ashar, Analysis of loan benchmark interest rate in banking loan dynamics: bifurcation and sensitivity analysis, J. Math. Model. Finance, 3(1) (2023), 191-202, doi: 10.22054/jmmf.2023.74976.1098.
  • [9] L. Fanti, The dynamics of a banking duopoly with capital regulations, Econ. Model., 37 (2014), 340-349, doi: 10.1016/j.econmod.2013.11.010.
  • [10] S. Brianzoni, G. Campisi, Dynamical analysis of a banking duopoly model with capital regulation and asymmetric costs, Discrete Contin. Dyn. Syst. - B, 26 (2021), 5807-5825, doi: 10.3934/dcdsb.2021116.
  • [11] S. Brianzoni, G. Campisi, A. Colasante, Nonlinear banking duopoly model with capital regulation: The case of Italy, Chaos Solitons Fractals, 160 (2022), 112209, doi: 10.1016/j.chaos.2022.112209.
  • [12] G. A. Pfann, P. C. Schotman, R. Tschernig, Nonlinear interest rate dynamics and implications for the term structure, J. Econom., 74(1) (1996), 149-176, doi: 10.1016/0304-4076(95)01754-2.
  • [13] L. Ballester, R. Ferrer, C. Gonz´alez, Linear and nonlinear interest rate sensitivity of Spanish banks, The Spanish Rev. Financ. Econ., 9(2) (2011), 35-48, doi: 10.1016/j.srfe.2011.09.002.
  • [14] P. A. Shively, Threshold nonlinear interest rates, Econ. Lett., 88(3) (2005), 313-317, doi: 10.1016/j.econlet.2004.12.032.
  • [15] Y. Baaziz, M. Labidi, A. Lahiani, Does the South African reserve bank follow a nonlinear interest rate reaction function?, Econ. Model., 35 (2005), 272-282, doi: 10.1016/j.econmod.2013.07.014.
  • [16] R. Br¨uggemann, J. Riedel, Nonlinear interest rate reaction functions for the UK, Econ. Model., 28 (2011), 1174-1185, doi: 10.1016/j.econmod.2010.12.005.
  • [17] M. A. Klein, A theory of the banking firm, J. Money Credit Banking, 3 (1971), 205-218.
  • [18] M. Monti, Deposit, credit and interest rates determination under alternative objective functions, G. P. Szego, K. Shell (Eds.), Math. Methods Investment Finance, Amsterdam, 1972.
  • [19] M. G. I. Bischi, C. Chiarella, M. Kopel, F. Szidarovszky, Nonlinear Oligopolies: Stability and Bifurcations, Berlin: Springer-Verlag, 2010.
  • [20] S. Elaydi, An Introduction to Difference Equations, New York, NY, USA: Springer, 1996.
  • [21] K. Alligood, T. Sauer, J. Yorke, Chaos: An Introduction to Dynamical Systems, New York: Springer-Verlag, 1996.
  • [22] M. F. Ansori, N. Y. Ashar, H. K. Fata, Logistic map-based banking loan dynamics with central bank policies, J. Appl. Nonlinear Dyn., (2024), (in press).
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Modelleme ve Simülasyon
Bölüm Makaleler
Yazarlar

Moch. Fandi Ansori 0000-0002-4588-3885

F. Hilal Gümüş 0000-0002-6329-7142

Erken Görünüm Tarihi 25 Şubat 2024
Yayımlanma Tarihi 8 Mayıs 2024
Gönderilme Tarihi 26 Kasım 2023
Kabul Tarihi 5 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 1

Kaynak Göster

APA Ansori, M. F., & Gümüş, F. H. (2024). A Difference Equation of Banking Loan with Nonlinear Deposit Interest Rate. Journal of Mathematical Sciences and Modelling, 7(1), 14-19. https://doi.org/10.33187/jmsm.1396368
AMA Ansori MF, Gümüş FH. A Difference Equation of Banking Loan with Nonlinear Deposit Interest Rate. Journal of Mathematical Sciences and Modelling. Mayıs 2024;7(1):14-19. doi:10.33187/jmsm.1396368
Chicago Ansori, Moch. Fandi, ve F. Hilal Gümüş. “A Difference Equation of Banking Loan With Nonlinear Deposit Interest Rate”. Journal of Mathematical Sciences and Modelling 7, sy. 1 (Mayıs 2024): 14-19. https://doi.org/10.33187/jmsm.1396368.
EndNote Ansori MF, Gümüş FH (01 Mayıs 2024) A Difference Equation of Banking Loan with Nonlinear Deposit Interest Rate. Journal of Mathematical Sciences and Modelling 7 1 14–19.
IEEE M. F. Ansori ve F. H. Gümüş, “A Difference Equation of Banking Loan with Nonlinear Deposit Interest Rate”, Journal of Mathematical Sciences and Modelling, c. 7, sy. 1, ss. 14–19, 2024, doi: 10.33187/jmsm.1396368.
ISNAD Ansori, Moch. Fandi - Gümüş, F. Hilal. “A Difference Equation of Banking Loan With Nonlinear Deposit Interest Rate”. Journal of Mathematical Sciences and Modelling 7/1 (Mayıs 2024), 14-19. https://doi.org/10.33187/jmsm.1396368.
JAMA Ansori MF, Gümüş FH. A Difference Equation of Banking Loan with Nonlinear Deposit Interest Rate. Journal of Mathematical Sciences and Modelling. 2024;7:14–19.
MLA Ansori, Moch. Fandi ve F. Hilal Gümüş. “A Difference Equation of Banking Loan With Nonlinear Deposit Interest Rate”. Journal of Mathematical Sciences and Modelling, c. 7, sy. 1, 2024, ss. 14-19, doi:10.33187/jmsm.1396368.
Vancouver Ansori MF, Gümüş FH. A Difference Equation of Banking Loan with Nonlinear Deposit Interest Rate. Journal of Mathematical Sciences and Modelling. 2024;7(1):14-9.

28627    Journal of Mathematical Sciences and Modelling28626


      3090029232  13487

28628  JMSM'de yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.