Research Article
BibTex RIS Cite

Controllability Analysis of Fractional-Order Delay Differential Equations via Contraction Principle

Year 2024, Volume: 7 Issue: 3, 120 - 126
https://doi.org/10.33187/jmsm.1504151

Abstract

This paper investigates the existence of solutions and the controllability for three distinct types of fractional-order delay differential equations, aiming to establish sufficient conditions for both existence and uniqueness while demonstrating controllability. Beginning with a fractional-order delayed system containing a nonzero control function, we apply the Banach fixed-point theorem to show that this system has a unique solution and satisfies the controllability property. Extending our analysis, we introduce an integral function with a delay term on the right-hand-side of the system, forming a more complex integro-fractional delay system. With a Lipschitz condition imposed on this newly introduced function, we establish the existence and uniqueness of solution, as well as the controllability of this system. In the final system, an integro-fractional hybrid model, an additional delayed function is embedded within the Caputo derivative operator, introducing distinct analytical challenges. Despite these complexities, we use the Banach fixed-point theorem and certain assumptions to demonstrate that the systems are controllable. Our approach is distinctive in incorporating delay functions on both sides of the related systems, which we support with theoretical results and illustrative examples. The paper outlines the fundamentals of fractional calculus, specifies the necessary assumptions, and uses fixed-point criteria to establish controllability with the existence of a solution, providing a clear framework for analyzing fractional-order control systems with delay functions.

References

  • [1] A. Da Silva, Controllability of linear systems on solvable Lie groups, SIAM J. Control Optim., 54 (2016), 372–390.
  • [2] E. Kizil, Control Homotopy of Trajectories, J. Dyn. Control Syst., 77 (2021), 683–692.
  • [3] A. Ali, S. Khalid, G. Rahmat, G. Ali, K. S. Nisar, B. Alshahrani, Controllability and Ulam–Hyers stability of fractional order linear systems with variable coefficients, Alex. Eng. J., 61(8) (2022), 6071-6076.
  • [4] A. Shukla, R. Patel, Controllability results for fractional semilinear delay control systems, J. Appl. Math. Comput., 65 (2021), 861–875.
  • [5] B. Radhakrishnan, K. Balachandran, P. Anukokila, Controllability results for fractional integrodifferential systems in Banach spaces, Int. J. Comput. Sci. Math., 5(2) (2014), 184-97.
  • [6] PS. Kumar, K. Balachandran, N. Annapoorani, Controllability of nonlinear fractional Langevin delay systems, Nonlinear Anal. Model. Control, 23(3) (2018), 321-340.
  • [7] H.G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y.Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213-231.
  • [8] G.Z. Voyiadjis, W. Sumelka, Brain modelling in the framework of anisotropic hyperelasticity with time fractional damage evolution governed by the Caputo-Almeida fractional derivative, J. Mech. Behav. Biomed., 89 (2019), 209-216.
  • [9] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  • [10] V.E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, 2010.
  • [11] T.A. Burton, A fixed-point theorem of Krasnoselskii, Appl. Math. Lett., 11(1) (1998), 85-88.
  • [12] T.A. Burton, A note on existence and uniqueness for integral equations with sum of two operators: progressive contractions, Fixed Point Theory, 20(1) (2019), 107-113.
  • [13] T.A. Burton, I.K. Purnaras, Global existence and uniqueness of solutions of integral equations with delay: progressive contractions, Electron. J. Qual. Theory Differ. Equ., 49 (2017), 1-6.
  • [14] F. Develi, O. Duman, Existence and stability analysis of solution for fractional delay differential equations, Filomat, 37 (2023), 1869–1878.
  • [15] M. Benchohra, D. Seba, Impulsive fractional differential equations in Banach spaces, Electron. J. Differ. Equ., 8 (2009), 1–14.
  • [16] N.I. Mahmudov, R. Murugesu, C. Ravichandran, V. Vijayakumar, Approximate controllability results for fractional semilinear integro-differential inclusions in Hilbert spaces, Results Math., 71 (2017), 45-61.
  • [17] V. Vijayakumar, K.S. Nisar, D. Chalishajar, A. Shukla, M. Malik, A. Alsaadi, S.F. Aldosary, A note on approximate controllability of fractional semilinear integrodifferential control systems via resolvent operators, Fractal and Fractional, 6(2) (2022), 1-14.
  • [18] M.M. Raja, V. Vijayakumar, A. Shukla, K.S. Nisar, H.M. Baskonus, On the approximate controllability results for fractional integrodifferential systems of order $1< r< 2 $ with sectorial operators. J. Comput. Appl. Math.J. Comput. Appl. Math., 415 (2022), 114492.
  • [19] K.S. Nisar, K. Muthuselvan, A new effective technique of nonlocal controllability criteria for state delay with impulsive fractional integro-differential equation, Results Appl. Math, 21 (2024), 100437.
  • [20] K.S. Nisar, K. Munusamy, C. Ravichandran, Results on existence of solutions in nonlocal partial functional integrodifferential equations with finite delay in nondense domain, Alex. Eng. J., 73 (2023), 377-384.
  • [21] K. Kavitha, K.S. Nisar, A. Shukla, V. Vijayakumar, S. Rezapour, A discussion concerning the existence results for the Sobolev-type Hilfer fractional delay integro-differential systems, Adv. Differ. Equ., 2021, 1-18.
  • [22] K. Kavitha, V. Vijayakumar, K.S. Nisar, On the approximate controllability of non-densely defined Sobolev-type nonlocal Hilfer fractional neutral Volterra-Fredholm delay integro-differential system, Alex. Eng. J., 69 (2023), 57-65.
  • [23] A. Shukla, V. Vijayakumar, K.S. Nisar, A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order $r\in(1, 2)$, Chaos, Solitons and Fractals, 154 ( 2022), 111615.
  • [24] K. Muthuvel, K. Kaliraj, K.S. Nisar, V. Vijayakumar, Relative controllability for Ψ-Caputo fractional delay control system, Results Control Optim., 16 (2024), 100475.
  • [25] G. Jothilakshmi, B. Sundaravadivoo, K.S. Nisar, S. Alsaeed, Impulsive fractional integro-delay differential equation-controllability through delayed Mittag-Leffler function perturbation, Int. J. Dyn. Contr., 12(11) (2024), 4178-4187.
  • [26] I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, 1999.
  • [27] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam, 2006.
  • [28] D.Y. Khusainov, G.V. Shuklin, Relative controllability in systems with pure delay, Int. J. Appl. Mech., 41 (2005), 210-221.
  • [29] M.D. Quinn, N. Carmichael, An approach to nonlinear control problem using fixed point methods, degree theory and pseudo-inverses, Numer. Funct. Anal. Optim., 7 (1984), 197–219.
Year 2024, Volume: 7 Issue: 3, 120 - 126
https://doi.org/10.33187/jmsm.1504151

Abstract

References

  • [1] A. Da Silva, Controllability of linear systems on solvable Lie groups, SIAM J. Control Optim., 54 (2016), 372–390.
  • [2] E. Kizil, Control Homotopy of Trajectories, J. Dyn. Control Syst., 77 (2021), 683–692.
  • [3] A. Ali, S. Khalid, G. Rahmat, G. Ali, K. S. Nisar, B. Alshahrani, Controllability and Ulam–Hyers stability of fractional order linear systems with variable coefficients, Alex. Eng. J., 61(8) (2022), 6071-6076.
  • [4] A. Shukla, R. Patel, Controllability results for fractional semilinear delay control systems, J. Appl. Math. Comput., 65 (2021), 861–875.
  • [5] B. Radhakrishnan, K. Balachandran, P. Anukokila, Controllability results for fractional integrodifferential systems in Banach spaces, Int. J. Comput. Sci. Math., 5(2) (2014), 184-97.
  • [6] PS. Kumar, K. Balachandran, N. Annapoorani, Controllability of nonlinear fractional Langevin delay systems, Nonlinear Anal. Model. Control, 23(3) (2018), 321-340.
  • [7] H.G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y.Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213-231.
  • [8] G.Z. Voyiadjis, W. Sumelka, Brain modelling in the framework of anisotropic hyperelasticity with time fractional damage evolution governed by the Caputo-Almeida fractional derivative, J. Mech. Behav. Biomed., 89 (2019), 209-216.
  • [9] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  • [10] V.E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, 2010.
  • [11] T.A. Burton, A fixed-point theorem of Krasnoselskii, Appl. Math. Lett., 11(1) (1998), 85-88.
  • [12] T.A. Burton, A note on existence and uniqueness for integral equations with sum of two operators: progressive contractions, Fixed Point Theory, 20(1) (2019), 107-113.
  • [13] T.A. Burton, I.K. Purnaras, Global existence and uniqueness of solutions of integral equations with delay: progressive contractions, Electron. J. Qual. Theory Differ. Equ., 49 (2017), 1-6.
  • [14] F. Develi, O. Duman, Existence and stability analysis of solution for fractional delay differential equations, Filomat, 37 (2023), 1869–1878.
  • [15] M. Benchohra, D. Seba, Impulsive fractional differential equations in Banach spaces, Electron. J. Differ. Equ., 8 (2009), 1–14.
  • [16] N.I. Mahmudov, R. Murugesu, C. Ravichandran, V. Vijayakumar, Approximate controllability results for fractional semilinear integro-differential inclusions in Hilbert spaces, Results Math., 71 (2017), 45-61.
  • [17] V. Vijayakumar, K.S. Nisar, D. Chalishajar, A. Shukla, M. Malik, A. Alsaadi, S.F. Aldosary, A note on approximate controllability of fractional semilinear integrodifferential control systems via resolvent operators, Fractal and Fractional, 6(2) (2022), 1-14.
  • [18] M.M. Raja, V. Vijayakumar, A. Shukla, K.S. Nisar, H.M. Baskonus, On the approximate controllability results for fractional integrodifferential systems of order $1< r< 2 $ with sectorial operators. J. Comput. Appl. Math.J. Comput. Appl. Math., 415 (2022), 114492.
  • [19] K.S. Nisar, K. Muthuselvan, A new effective technique of nonlocal controllability criteria for state delay with impulsive fractional integro-differential equation, Results Appl. Math, 21 (2024), 100437.
  • [20] K.S. Nisar, K. Munusamy, C. Ravichandran, Results on existence of solutions in nonlocal partial functional integrodifferential equations with finite delay in nondense domain, Alex. Eng. J., 73 (2023), 377-384.
  • [21] K. Kavitha, K.S. Nisar, A. Shukla, V. Vijayakumar, S. Rezapour, A discussion concerning the existence results for the Sobolev-type Hilfer fractional delay integro-differential systems, Adv. Differ. Equ., 2021, 1-18.
  • [22] K. Kavitha, V. Vijayakumar, K.S. Nisar, On the approximate controllability of non-densely defined Sobolev-type nonlocal Hilfer fractional neutral Volterra-Fredholm delay integro-differential system, Alex. Eng. J., 69 (2023), 57-65.
  • [23] A. Shukla, V. Vijayakumar, K.S. Nisar, A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order $r\in(1, 2)$, Chaos, Solitons and Fractals, 154 ( 2022), 111615.
  • [24] K. Muthuvel, K. Kaliraj, K.S. Nisar, V. Vijayakumar, Relative controllability for Ψ-Caputo fractional delay control system, Results Control Optim., 16 (2024), 100475.
  • [25] G. Jothilakshmi, B. Sundaravadivoo, K.S. Nisar, S. Alsaeed, Impulsive fractional integro-delay differential equation-controllability through delayed Mittag-Leffler function perturbation, Int. J. Dyn. Contr., 12(11) (2024), 4178-4187.
  • [26] I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, 1999.
  • [27] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam, 2006.
  • [28] D.Y. Khusainov, G.V. Shuklin, Relative controllability in systems with pure delay, Int. J. Appl. Mech., 41 (2005), 210-221.
  • [29] M.D. Quinn, N. Carmichael, An approach to nonlinear control problem using fixed point methods, degree theory and pseudo-inverses, Numer. Funct. Anal. Optim., 7 (1984), 197–219.
There are 29 citations in total.

Details

Primary Language English
Subjects Partial Differential Equations, Applied Mathematics (Other)
Journal Section Articles
Authors

Okan Duman 0000-0001-9848-0759

Early Pub Date December 17, 2024
Publication Date
Submission Date June 24, 2024
Acceptance Date November 27, 2024
Published in Issue Year 2024 Volume: 7 Issue: 3

Cite

APA Duman, O. (2024). Controllability Analysis of Fractional-Order Delay Differential Equations via Contraction Principle. Journal of Mathematical Sciences and Modelling, 7(3), 120-126. https://doi.org/10.33187/jmsm.1504151
AMA Duman O. Controllability Analysis of Fractional-Order Delay Differential Equations via Contraction Principle. Journal of Mathematical Sciences and Modelling. December 2024;7(3):120-126. doi:10.33187/jmsm.1504151
Chicago Duman, Okan. “Controllability Analysis of Fractional-Order Delay Differential Equations via Contraction Principle”. Journal of Mathematical Sciences and Modelling 7, no. 3 (December 2024): 120-26. https://doi.org/10.33187/jmsm.1504151.
EndNote Duman O (December 1, 2024) Controllability Analysis of Fractional-Order Delay Differential Equations via Contraction Principle. Journal of Mathematical Sciences and Modelling 7 3 120–126.
IEEE O. Duman, “Controllability Analysis of Fractional-Order Delay Differential Equations via Contraction Principle”, Journal of Mathematical Sciences and Modelling, vol. 7, no. 3, pp. 120–126, 2024, doi: 10.33187/jmsm.1504151.
ISNAD Duman, Okan. “Controllability Analysis of Fractional-Order Delay Differential Equations via Contraction Principle”. Journal of Mathematical Sciences and Modelling 7/3 (December 2024), 120-126. https://doi.org/10.33187/jmsm.1504151.
JAMA Duman O. Controllability Analysis of Fractional-Order Delay Differential Equations via Contraction Principle. Journal of Mathematical Sciences and Modelling. 2024;7:120–126.
MLA Duman, Okan. “Controllability Analysis of Fractional-Order Delay Differential Equations via Contraction Principle”. Journal of Mathematical Sciences and Modelling, vol. 7, no. 3, 2024, pp. 120-6, doi:10.33187/jmsm.1504151.
Vancouver Duman O. Controllability Analysis of Fractional-Order Delay Differential Equations via Contraction Principle. Journal of Mathematical Sciences and Modelling. 2024;7(3):120-6.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.