Research Article
BibTex RIS Cite

Year 2025, Volume: 8 Issue: 3, 129 - 143, 11.09.2025
https://doi.org/10.33187/jmsm.1569583

Abstract

References

  • [1] X. Xang, Review of Classical Epidemic Models, SAMSI Undergraduate Workshop Spring, 2010.
  • [2] W.H. Hamer, The Milroy lectures on epidemic disease in England—The evidence of variability and persistence of type, The Lancet, 1 (1906), 733-739.
  • [3] W. O. Kermack, A. G. McKendrick, A contribution to mathematical theory of epidemics, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 115(772) (1927), 700-721. https://doi.org/10.1098/rspa.1927.0118
  • [4] B. Dubey, P. Dubey, U. S. Dubey, Dynamics of an SIR model with nonlinear incidence and treatment rate, Appl. Appl. Math., 10(2) (2015), 718-737.
  • [5] P. Bhattacharya, S. Paul, P. Biswas, Mathematical modeling of treatment SIR model with respect to variable contact rate, International Proceedings of Economics Development and Research, 83 (2015), 34-41.
  • [6] R. Uddin, E. A. Algehyne, Mathematical analysis of COVID-19 by using SIR model with convex incidence rate, Results Phys., 23 (2021), Article ID 103970. https://doi.org/10.1016/j.rinp.2021.103970
  • [7] W. J. Zhu, S. F. Shen, An improved SIR model describing the epidemic dynamics of the COVID-19 in China, Results Phys., 25 (2021), Article ID 104289. https://doi.org/10.1016/j.rinp.2021.104289
  • [8] S. Ghersheen, V. Kozlov, V. Tkachev, et al., Mathematical analysis of complex SIR model with coinfection and density dependence, Comput. Math. Methods, 1 (2019), Article ID e1042. https://doi.org/10.1002/cmm4.1042
  • [9] A. Atangana, Modelling the spread of COVID-19 with new fractional-fractal operators: Can the lockdown save mankind before vaccination?, Chaos Solitons Fractals, 136(2020), Article ID 109860. https://doi.org/10.1016/j.chaos.2020.109860
  • [10] B. Wacker, J. Schlüter, Time-continuous and time-discrete SIR models revisited: theory and applications, Adv. Differ. Equations, 556 (2020), 1-44. https://doi.org/10.1186/s13662-020-02995-1
  • [11] P. Van Den Driessche, Reproduction numbers of infectious disease models, Infect. Dis. Model., 2(3) (2017), 288-303. https://doi.org/10.1016/j.idm.2017.06.002
  • [12] H. Talukder, K. Debnath, A. Raquib, et al., Estimation of basic reproduction number (Ro) of novel coronavirus (COVID-19) from SEIR Model in perspective of Bangladesh, J. Infect. Dis. Epidemiol., 6(4) (2020), 1-6. https://doi.org/10.23937/2474-3658/1510144
  • [13] O. D. Makinde, Adomian Decomposition Approach to a SIR epidemic model with constant vaccination strategy, Appl. Math. Comput., 184(2) (2007), 842-848. https://doi.org/10.1016/j.amc.2006.06.074
  • [14] S. T. Akinyemi, M. O. Ibrahim, I. G. Usman, et al., Global stability analysis of SIR epidemic model with relapse and immunity loss, International Journal of Applied Science and Mathematical Theory, 2(1) (2016), 1-14.
  • [15] D. R. Anderson, S. G. Georgiev, Conformable Dynamic Equations on Time Scales, Chapman and Hall/CRC, 2020. https://doi.org/10.1201/9781003057406
  • [16] K. Ergen, A. Cilli, N. Yahnioğlu, Predicting epidemic diseases using mathematical modelling of SIR, Acta Phys. Pol. A, 128 (2015), 273-275. https://doi.org/10.12693/APhysPolA.128.B-273
  • [17] B. Uzunoğlu, SIS Salgın hastalıkların matematiksel modeli ve kararlılık analizi, Master’s thesis, Kayseri Erciyes University, 2013.
  • [18] L. A. Urena-Lopez, A. X. Gonzalez-Morales, Time-dependent SI model for epidemiology and applications to Covid-19, Rev. Mex. Fis., 67(5) (2021), 1-15. https://doi.org/10.31349/revmexfis.67.050706
  • [19] L. J. Allen, F. Brauer, P. Van den Driessche, et al., Mathematical Epidemiology (Vol. 1945, pp. 3-17). J. Wu (Ed.). Berlin, Springer, 2008.
  • [20] M. Bohner, S. Streipert, D.F. Torres, Exact solution to a dynamic SIR model, Nonlinear Anal. Hybrid Syst, 32 (2019), 228-238. https://doi.org/10.1016/j.nahs.2018.12.005
  • [21] N. T. J. Bailey, The Mathematical Theory of Infectious Diseases and its Applications, 2nd ediition, 1975, 430 pages.
  • [22] M. Y. Li, J. R. Graef, L. Wang, et al., Global dynamics of a SEIR model with varying total population size, Math. Biosci., 160(2) (1999), 191–213. https://doi.org/10.1016/S0025-5564(99)00030-9
  • [23] W. R. Derrick, P. Van den Driessche, A disease transmission model in a nonconstant population, J. Math. Biol., 31(5) (1993), 495-512. https://doi.org/10.1007/BF00173889
  • [24] A. Rachah, D. F. M. Torres, Analysis, simulation and optimal control of a SEIR model for Ebola virus with demographic effects, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 67(1) (2018), 179-197. https://doi.org/10.1501/Commua1 0000000841
  • [25] N. T. J. Bailey, Spatial models in the epidemiology of infectious diseases, Biological Growth and Spread, Lecture Notes in Biomathematics, 38 (1980), 233-261.
  • [26] J. Arino, R. Jordan, P. Van den Driessche, Quarantine in a multi-species epidemic model with spatial dynamics, Math. Biosci., 206(1) (2007), 46-60. https://doi.org/10.1016/j.mbs.2005.09.002
  • [27] R. Rifhat, L. Wang, Z. Teng, Dynamics for a class of stochastic SIS epidemic models with nonlinear incidence and periodic coefficients, Phys. A: Stat. Mech. Appl., 481 (2017), 176-190. https://doi.org/10.1016/j.physa.2017.04.016
  • [28] C. Yuan, D. Jiang, D. O’Regan, et al., Stochastically asymptotically stability of the multi-group SEIR and SIR models with random perturbation, Commun. Nonlinear Sci. Numer. Simul., 17(6) (2012), 2501-2516. https://doi.org/10.1016/j.cnsns.2011.07.025
  • [29] K. Fan, Y. Zhang, S. Gao, et al., A class of stochastic delayed SIR epidemic models with generalized nonlinear incidence rate and temporary immunity, Physica A, 481 (2017), 198-208. https://doi.org/10.1016/j.physa.2017.04.055
  • [30] J. Djordjevic, C. J. Silva, D. F. Torres, A stochastic SICA epidemic model for HIV transmission, Appl. Math. Lett., 84 (2018), 168-175. https://doi.org/10.1016/j.aml.2018.05.005
  • [31] S. Çakan, Dağılımlı zaman gecikmeli bir SIS salgın modelinin kararlılığına ilişkin bazı sonuçlar, Türk Doğa ve Fen Dergisi, 10(2) (2021), 18-28. https://doi.org/10.46810/tdfd.814302
  • [32] H. Khan, R. N. Mohapatra, K. Vajravelu, et al., The explicit series solution of SIR and SIS epidemic models, Appl. Math. Comput., 215(2) (2009), 653–669. https://doi.org/10.1016/j.amc.2009.05.051
  • [33] R. Pettersson, T. Lindström, The Role of Explicit Solutions in the Analysis of Epidemic Models, Bachelor’s Degree Project Thesis in Applied Mathematics, Linnaeus University, Sweden, 2021.
  • [34] M. Bohner, S. H. Streipert, The SIS-model on time scales, Pliska Stud. Math., 26 (2016), 11-28.

Proportional Epidemic Models on Time Scales

Year 2025, Volume: 8 Issue: 3, 129 - 143, 11.09.2025
https://doi.org/10.33187/jmsm.1569583

Abstract

In this study, some epidemic models such as SI (Susceptible-Infectious), SIR (Susceptible-Infectious-Recovered), and SIS (Susceptible-Infectious-Susceptible) have been formulated using proportional derivative on time scales, and solutions have been obtained through the application of time scale analysis techniques and proportional derivative rules.

References

  • [1] X. Xang, Review of Classical Epidemic Models, SAMSI Undergraduate Workshop Spring, 2010.
  • [2] W.H. Hamer, The Milroy lectures on epidemic disease in England—The evidence of variability and persistence of type, The Lancet, 1 (1906), 733-739.
  • [3] W. O. Kermack, A. G. McKendrick, A contribution to mathematical theory of epidemics, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 115(772) (1927), 700-721. https://doi.org/10.1098/rspa.1927.0118
  • [4] B. Dubey, P. Dubey, U. S. Dubey, Dynamics of an SIR model with nonlinear incidence and treatment rate, Appl. Appl. Math., 10(2) (2015), 718-737.
  • [5] P. Bhattacharya, S. Paul, P. Biswas, Mathematical modeling of treatment SIR model with respect to variable contact rate, International Proceedings of Economics Development and Research, 83 (2015), 34-41.
  • [6] R. Uddin, E. A. Algehyne, Mathematical analysis of COVID-19 by using SIR model with convex incidence rate, Results Phys., 23 (2021), Article ID 103970. https://doi.org/10.1016/j.rinp.2021.103970
  • [7] W. J. Zhu, S. F. Shen, An improved SIR model describing the epidemic dynamics of the COVID-19 in China, Results Phys., 25 (2021), Article ID 104289. https://doi.org/10.1016/j.rinp.2021.104289
  • [8] S. Ghersheen, V. Kozlov, V. Tkachev, et al., Mathematical analysis of complex SIR model with coinfection and density dependence, Comput. Math. Methods, 1 (2019), Article ID e1042. https://doi.org/10.1002/cmm4.1042
  • [9] A. Atangana, Modelling the spread of COVID-19 with new fractional-fractal operators: Can the lockdown save mankind before vaccination?, Chaos Solitons Fractals, 136(2020), Article ID 109860. https://doi.org/10.1016/j.chaos.2020.109860
  • [10] B. Wacker, J. Schlüter, Time-continuous and time-discrete SIR models revisited: theory and applications, Adv. Differ. Equations, 556 (2020), 1-44. https://doi.org/10.1186/s13662-020-02995-1
  • [11] P. Van Den Driessche, Reproduction numbers of infectious disease models, Infect. Dis. Model., 2(3) (2017), 288-303. https://doi.org/10.1016/j.idm.2017.06.002
  • [12] H. Talukder, K. Debnath, A. Raquib, et al., Estimation of basic reproduction number (Ro) of novel coronavirus (COVID-19) from SEIR Model in perspective of Bangladesh, J. Infect. Dis. Epidemiol., 6(4) (2020), 1-6. https://doi.org/10.23937/2474-3658/1510144
  • [13] O. D. Makinde, Adomian Decomposition Approach to a SIR epidemic model with constant vaccination strategy, Appl. Math. Comput., 184(2) (2007), 842-848. https://doi.org/10.1016/j.amc.2006.06.074
  • [14] S. T. Akinyemi, M. O. Ibrahim, I. G. Usman, et al., Global stability analysis of SIR epidemic model with relapse and immunity loss, International Journal of Applied Science and Mathematical Theory, 2(1) (2016), 1-14.
  • [15] D. R. Anderson, S. G. Georgiev, Conformable Dynamic Equations on Time Scales, Chapman and Hall/CRC, 2020. https://doi.org/10.1201/9781003057406
  • [16] K. Ergen, A. Cilli, N. Yahnioğlu, Predicting epidemic diseases using mathematical modelling of SIR, Acta Phys. Pol. A, 128 (2015), 273-275. https://doi.org/10.12693/APhysPolA.128.B-273
  • [17] B. Uzunoğlu, SIS Salgın hastalıkların matematiksel modeli ve kararlılık analizi, Master’s thesis, Kayseri Erciyes University, 2013.
  • [18] L. A. Urena-Lopez, A. X. Gonzalez-Morales, Time-dependent SI model for epidemiology and applications to Covid-19, Rev. Mex. Fis., 67(5) (2021), 1-15. https://doi.org/10.31349/revmexfis.67.050706
  • [19] L. J. Allen, F. Brauer, P. Van den Driessche, et al., Mathematical Epidemiology (Vol. 1945, pp. 3-17). J. Wu (Ed.). Berlin, Springer, 2008.
  • [20] M. Bohner, S. Streipert, D.F. Torres, Exact solution to a dynamic SIR model, Nonlinear Anal. Hybrid Syst, 32 (2019), 228-238. https://doi.org/10.1016/j.nahs.2018.12.005
  • [21] N. T. J. Bailey, The Mathematical Theory of Infectious Diseases and its Applications, 2nd ediition, 1975, 430 pages.
  • [22] M. Y. Li, J. R. Graef, L. Wang, et al., Global dynamics of a SEIR model with varying total population size, Math. Biosci., 160(2) (1999), 191–213. https://doi.org/10.1016/S0025-5564(99)00030-9
  • [23] W. R. Derrick, P. Van den Driessche, A disease transmission model in a nonconstant population, J. Math. Biol., 31(5) (1993), 495-512. https://doi.org/10.1007/BF00173889
  • [24] A. Rachah, D. F. M. Torres, Analysis, simulation and optimal control of a SEIR model for Ebola virus with demographic effects, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 67(1) (2018), 179-197. https://doi.org/10.1501/Commua1 0000000841
  • [25] N. T. J. Bailey, Spatial models in the epidemiology of infectious diseases, Biological Growth and Spread, Lecture Notes in Biomathematics, 38 (1980), 233-261.
  • [26] J. Arino, R. Jordan, P. Van den Driessche, Quarantine in a multi-species epidemic model with spatial dynamics, Math. Biosci., 206(1) (2007), 46-60. https://doi.org/10.1016/j.mbs.2005.09.002
  • [27] R. Rifhat, L. Wang, Z. Teng, Dynamics for a class of stochastic SIS epidemic models with nonlinear incidence and periodic coefficients, Phys. A: Stat. Mech. Appl., 481 (2017), 176-190. https://doi.org/10.1016/j.physa.2017.04.016
  • [28] C. Yuan, D. Jiang, D. O’Regan, et al., Stochastically asymptotically stability of the multi-group SEIR and SIR models with random perturbation, Commun. Nonlinear Sci. Numer. Simul., 17(6) (2012), 2501-2516. https://doi.org/10.1016/j.cnsns.2011.07.025
  • [29] K. Fan, Y. Zhang, S. Gao, et al., A class of stochastic delayed SIR epidemic models with generalized nonlinear incidence rate and temporary immunity, Physica A, 481 (2017), 198-208. https://doi.org/10.1016/j.physa.2017.04.055
  • [30] J. Djordjevic, C. J. Silva, D. F. Torres, A stochastic SICA epidemic model for HIV transmission, Appl. Math. Lett., 84 (2018), 168-175. https://doi.org/10.1016/j.aml.2018.05.005
  • [31] S. Çakan, Dağılımlı zaman gecikmeli bir SIS salgın modelinin kararlılığına ilişkin bazı sonuçlar, Türk Doğa ve Fen Dergisi, 10(2) (2021), 18-28. https://doi.org/10.46810/tdfd.814302
  • [32] H. Khan, R. N. Mohapatra, K. Vajravelu, et al., The explicit series solution of SIR and SIS epidemic models, Appl. Math. Comput., 215(2) (2009), 653–669. https://doi.org/10.1016/j.amc.2009.05.051
  • [33] R. Pettersson, T. Lindström, The Role of Explicit Solutions in the Analysis of Epidemic Models, Bachelor’s Degree Project Thesis in Applied Mathematics, Linnaeus University, Sweden, 2021.
  • [34] M. Bohner, S. H. Streipert, The SIS-model on time scales, Pliska Stud. Math., 26 (2016), 11-28.
There are 34 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Emrah Yılmaz 0000-0002-7822-9193

Gülcan Tokay 0000-0002-6317-6164

Early Pub Date August 18, 2025
Publication Date September 11, 2025
Submission Date October 18, 2024
Acceptance Date July 26, 2025
Published in Issue Year 2025 Volume: 8 Issue: 3

Cite

APA Yılmaz, E., & Tokay, G. (2025). Proportional Epidemic Models on Time Scales. Journal of Mathematical Sciences and Modelling, 8(3), 129-143. https://doi.org/10.33187/jmsm.1569583
AMA Yılmaz E, Tokay G. Proportional Epidemic Models on Time Scales. Journal of Mathematical Sciences and Modelling. September 2025;8(3):129-143. doi:10.33187/jmsm.1569583
Chicago Yılmaz, Emrah, and Gülcan Tokay. “Proportional Epidemic Models on Time Scales”. Journal of Mathematical Sciences and Modelling 8, no. 3 (September 2025): 129-43. https://doi.org/10.33187/jmsm.1569583.
EndNote Yılmaz E, Tokay G (September 1, 2025) Proportional Epidemic Models on Time Scales. Journal of Mathematical Sciences and Modelling 8 3 129–143.
IEEE E. Yılmaz and G. Tokay, “Proportional Epidemic Models on Time Scales”, Journal of Mathematical Sciences and Modelling, vol. 8, no. 3, pp. 129–143, 2025, doi: 10.33187/jmsm.1569583.
ISNAD Yılmaz, Emrah - Tokay, Gülcan. “Proportional Epidemic Models on Time Scales”. Journal of Mathematical Sciences and Modelling 8/3 (September2025), 129-143. https://doi.org/10.33187/jmsm.1569583.
JAMA Yılmaz E, Tokay G. Proportional Epidemic Models on Time Scales. Journal of Mathematical Sciences and Modelling. 2025;8:129–143.
MLA Yılmaz, Emrah and Gülcan Tokay. “Proportional Epidemic Models on Time Scales”. Journal of Mathematical Sciences and Modelling, vol. 8, no. 3, 2025, pp. 129-43, doi:10.33187/jmsm.1569583.
Vancouver Yılmaz E, Tokay G. Proportional Epidemic Models on Time Scales. Journal of Mathematical Sciences and Modelling. 2025;8(3):129-43.

29237    Journal of Mathematical Sciences and Modelling 29238

                  29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.