Research Article
BibTex RIS Cite

A Fractional-Order Chemical System: Numerical Analysis with Distinct Variable-Order Derivatives

Year 2025, Volume: 8 Issue: 4, 185 - 194
https://doi.org/10.33187/jmsm.1749478

Abstract

Fractional calculus models complicated systems that exhibit memory effects, showing much greater potential than classical integer-order derivatives in modeling chaotic systems. In this study, we investigate the application of two numerical interpolation methods, Newton and Lagrange polynomials, for solving a fractional-order Lorenz-type chemical model based on various fractional derivatives. The Lorenz-type model is modified, as it is known for its chaotic behavior, and augmented to allow for modeling chemical reactions, with variable-order fractional derivatives to reflect reality. We utilize numerical schemes for the Caputo-Liouville, Caputo-Fabrizio, and Atangana-Baleanu-Caputo fractional derivatives, and we assess the performance of the Newton and the Lagrange numerical approximations.

References

  • [1] B. Ross, The development of fractional calculus 1695–1900, Hist. Math., 4(1) (1977), 75-89. https://doi.org/10.1016/0315-0860(77)90039-8
  • [2] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1(2) (2015), 73-85.
  • [3] M. Caputo, M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Prog. Fract. Differ. Appl., 2(1) (2016), 1-11. https://doi.org/10.18576/pfda/020101
  • [4] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, (2016), arXiv:1602.03408.
  • [5] B. P. Moghaddam, Sh. Yaghoobi, J. A. Tenreiro Machado, An extended predictor–corrector algorithm for variable-order fractional delay differential equations, J. Comput. Nonlinear Dynam., 11(6) (2016), Article ID 061001. https://doi.org/10.1115/1.4032574
  • [6] D. Kumar, J. Singh, D. Baleanu, et al., Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel Phys. A: Stat. Mech. Appl., 492 (2018), 155-167. https://doi.org/10.1016/j.physa.2017.10.002
  • [7] W. W. Mohammed, D. Bl¨omker, Fast-diffusion limit for reaction-diffusion equations with multiplicative noise, J. Math. Analy. Appl., 496(2) (2021), Article ID 124808. https://doi.org/10.1016/j.jmaa.2020.124808
  • [8] W. W. Mohammed, N. Iqbal, Impact of the same degenerate additive noise on a coupled system of fractional space diffusion equations, Fractals, 30(01) (2022), Article ID 2240033. https://doi.org/10.1142/s0218348x22400333
  • [9] M. Chaudhary, M. K. Singh, Anomalous transport for multispecies reactive system with first order decay: Time-fractional model, Physica Scripta, 97(7) (2022), Article ID 074001. https://doi.org/10.1088/1402-4896/ac71e0
  • [10] S. He, H. Wang, K. Sun, Solutions and memory effect of fractional-order chaotic system: A review, Chinese Phys. B, 31(6) (2022), Article ID 060501. https://doi.org/10.1088/1674-1056/ac43ae
  • [11] C. Baishya, M. K. Naik, R. N. Premakumari, Design and implementation of a sliding mode controller and adaptive sliding mode controller for a novel fractional chaotic class of equations, Res. Control Optim., 14 (2024), Article ID 100338. https://doi.org/10.1016/j.rico.2023.100338
  • [12] H. G. Sun, A. Chang, Y. Zhang, et al., A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications, Fract. Calc. Appl. Anal., 22(1) (2019), 27-59. https://doi.org/10.1515/fca-2019-0003
  • [13] E. N. Lorenz, Deterministic nonperiodic flow 1, In Universality in Chaos, 2nd edition, 2017.
  • [14] G. Chen, T. Ueta, Yet another chaotic attractor, Int. J. Bifurc. Chaos., 9(07) (1999), 1465-1466. https://doi.org/10.1142/s0218127499001024
  • [15] J. Lü, G. Chen, A new chaotic attractor coined, Int. J. Bifurc. Chaos., 12(03) (2002), 659-661. https://doi.org/10.1142/s0218127402004620
  • [16] G. Dahlquist, Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand., 4 (1956), 33-53. https://doi.org/10.7146/math.scand.a-10454
  • [17] W. E. Milne, Numerical integration of ordinary differential equations, Amer. Math. Monthly, 33(9) (1926), 455-460. https://doi.org/10.1080/00029890.1926.11986619
  • [18] Z. Wang, Y. Sun, B. J. van Wyk, et al., A 3-d four-wing attractor and its analysis, Braz. J. Phys., 39(3) (2009), 547-553. https://doi.org/10.1590/s0103-97332009000500007
  • [19] B. S. T. Alkahtani, A new numerical scheme based on Newton polynomial with application to fractional nonlinear differential equations, Alex. Eng. J., 59(4) (2020), 1893-1907. https://doi.org/10.1016/j.aej.2019.11.008
  • [20] B. Babayar-Razlighi, Newton-Taylor polynomial solutions of systems of nonlinear differential equations with variable coefficients, Int. J. Nonlinear Anal. Appl., 12(2) (2021), 237-248. https://doi.org/10.22075/ijnaa.2020.18371.2007
  • [21] M. H. Heydari, A. Atangana, Z. Avazzadeh, Chebyshev polynomials for the numerical solution of fractal–fractional model of nonlinear Ginzburg–Landau equation, Eng. Comput., 37 (2021), 1377-1388. https://doi.org/10.1007/s00366-019-00889-9
  • [22] A. Atangana, S. I. Araz, New numerical scheme with Newton polynomial: Theory, methods, and applications, Acad. Pr., 2021. https://doi.org/10.1016/b978-0-32-385448-1.00007-x
  • [23] W.Werner, Polynomial interpolation: Lagrange versus Newton, Math. Comp., 43 (1984), 205-217. https://doi.org/10.1090/s0025-5718-1984-0744931-0
  • [24] Y. Yang, S. P. Gordon, Visualizing and understanding the components of Lagrange and Newton interpolation, PRIMUS, 26(1) (2016), 39-52. https://doi.org/10.1080/10511970.2015.1045053
  • [25] A. Atangana, S. Qureshi, Modeling attractors of chaotic dynamical systems with fractal–fractional operators, Chaos Soliton Fract., 123 (2019), 320-337. https://doi.org/10.1016/j.chaos.2019.04.020
  • [26] A. Vanecek, S. Celikovsky, Control systems: From linear analysis to synthesis of chaos, Prentice-Hall, New Jersey, 1996.
  • [27] L. Sadek, M. E. Samei, M. S. Hashemi, The Galerkin Mittag-Leffler method for solving fractional optimal control problems with inequality constraints, Math. Comput. Simul., 240 (2026), 191-207. https://doi.org/10.1016/j.matcom.2025.07.018
  • [28] M. S. Hashemi, M. Bayram, Numerical treatment on fractional differential-algebraic equations by an optimization technique, Int. J. Comput. Math., (2025), 1-13. https://doi.org/10.1080/00207160.2025.2528092
  • [29] D. Poland, Cooperative catalysis and chemical chaos: A chemical model for the Lorenz equations, Physica D: Nonlinear Phenomena, 65(1-2) (1993), 86-99. https://doi.org/10.1016/0167-2789(93)90006-m
  • [30] N. Samardzija, L. D. Greller, E. Wasserman, Nonlinear chemical kinetic schemes derived from mechanical and electrical dynamical systems, J. Chem. Phys., 90 (1989), 2296-2304. https://doi.org/10.1063/1.455970
  • [31] I. Petr´aˇs, The fractional-order Lorenz-type systems: A review, Fract. Calc. Appl. Analy., 25 (2022), 362-377. https://doi.org/10.1007/s13540-022-00016-4
  • [32] S. Celikovsky, G. Chen, On a generalized Lorenz canonical form of chaotic systems, Int. J. Bifurc. Chaos, 12(08) (2002), 1789-1812. https://doi.org/10.1142/s0218127402005467
  • [33] S. Celikovsky, G. Chen, On the generalized Lorenz canonical form, Chaos Soliton Fract., 26(5) (2005), 1271-1276. https://doi.org/10.1016/j.chaos.2005.02.040
  • [34] G. Chen, J. Lü, Dynamics of the Lorenz system family: Analysis, control and synchronization, Sci. Press, Beijing, 2003.
  • [35] C. Sparrow, The Lorenz equations: Bifurcations, chaos, and strange attractors, Vol.41, Springer Sci. Bus. Med., 2012.
  • [36] Z. Galias, P. Zgliczynski, Computer assisted proof of chaos in the Lorenz equations, Phys. D: Nonlin. Phen., 115(3-4) (1998), 165-188. https://doi.org/10.1016/s0167-2789(97)00233-9
  • [37] E. Bodenschatz, W.Pesch, G. Ahlers, Recent developments in Rayleigh-B´enard convection, Annu. Rev. Fluid Mech., 32 (2000), 709-778. https://doi.org/10.1146/annurev.fluid.32.1.709
  • [38] J. Lü, G. Chen, D. Cheng, A new chaotic system and beyond: The generalized Lorenz-like system, Int. J. Bifurc. Chaos, 14(05) (2004), 1507-1537. https://doi.org/10.1142/s021812740401014x
  • [39] U. S. Thounaojam, Stochastic chaos in chemical Lorenz system: Interplay of intrinsic noise and nonlinearity, Chaos Soliton. Frac., 165 (2022), Article ID 112763. https://doi.org/10.1016/j.chaos.2022.112763
  • [40] Y. J. Sun, A simple observer design of the generalized Lorenz chaotic systems, Phys. Lett. A, 374(7) (2010), 933-937. https://doi.org/10.1016/j.physleta.2009.12.019
  • [41] H. Nabil, H. Tayeb, A fractional-order chaotic Lorenz-based chemical system: Dynamic investigation, complexity analysis, chaos synchronization, and its application to secure communication, Chin. Phys. B, 33(12) (2024), Article ID 120503. https://doi.org/10.1088/1674-1056/ad7fcf
  • [42] M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, Eur. Phys. J. Plus, 132 (2017), Article ID 444. https://doi.org/10.1140/epjp/i2017-11717-0
  • [43] N. Almutairi, S. Saber, Application of a time-fractal fractional derivative with a power-law kernel to the Burke-Shaw system based on Newton’s interpolation polynomials, MethodsX, 12 (2024), Article ID 102510. https://doi.org/10.1016/j.mex.2023.102510
  • [44] S. Naveen, V. Parthiban, Application of Newton’s polynomial interpolation scheme for variable order fractional derivative with power-law kernel, Sci. Rep., 14 (2024), Article ID 16090. https://doi.org/10.1038/s41598-024-66494-z
  • [45] J. E. Sol´ıs-P´erez, J. F. G´omez-Aguilar, A. Atangana, Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws, Chaos Soliton Frac., 114 (2018), 175-185. https://doi.org/10.1016/j.chaos.2018.06.032
There are 45 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Ughur Budaq 0009-0007-5482-1436

Emrullah Yaşar 0000-0003-4732-5753

Early Pub Date October 21, 2025
Publication Date October 23, 2025
Submission Date July 23, 2025
Acceptance Date September 29, 2025
Published in Issue Year 2025 Volume: 8 Issue: 4

Cite

APA Budaq, U., & Yaşar, E. (2025). A Fractional-Order Chemical System: Numerical Analysis with Distinct Variable-Order Derivatives. Journal of Mathematical Sciences and Modelling, 8(4), 185-194. https://doi.org/10.33187/jmsm.1749478
AMA Budaq U, Yaşar E. A Fractional-Order Chemical System: Numerical Analysis with Distinct Variable-Order Derivatives. Journal of Mathematical Sciences and Modelling. October 2025;8(4):185-194. doi:10.33187/jmsm.1749478
Chicago Budaq, Ughur, and Emrullah Yaşar. “A Fractional-Order Chemical System: Numerical Analysis With Distinct Variable-Order Derivatives”. Journal of Mathematical Sciences and Modelling 8, no. 4 (October 2025): 185-94. https://doi.org/10.33187/jmsm.1749478.
EndNote Budaq U, Yaşar E (October 1, 2025) A Fractional-Order Chemical System: Numerical Analysis with Distinct Variable-Order Derivatives. Journal of Mathematical Sciences and Modelling 8 4 185–194.
IEEE U. Budaq and E. Yaşar, “A Fractional-Order Chemical System: Numerical Analysis with Distinct Variable-Order Derivatives”, Journal of Mathematical Sciences and Modelling, vol. 8, no. 4, pp. 185–194, 2025, doi: 10.33187/jmsm.1749478.
ISNAD Budaq, Ughur - Yaşar, Emrullah. “A Fractional-Order Chemical System: Numerical Analysis With Distinct Variable-Order Derivatives”. Journal of Mathematical Sciences and Modelling 8/4 (October2025), 185-194. https://doi.org/10.33187/jmsm.1749478.
JAMA Budaq U, Yaşar E. A Fractional-Order Chemical System: Numerical Analysis with Distinct Variable-Order Derivatives. Journal of Mathematical Sciences and Modelling. 2025;8:185–194.
MLA Budaq, Ughur and Emrullah Yaşar. “A Fractional-Order Chemical System: Numerical Analysis With Distinct Variable-Order Derivatives”. Journal of Mathematical Sciences and Modelling, vol. 8, no. 4, 2025, pp. 185-94, doi:10.33187/jmsm.1749478.
Vancouver Budaq U, Yaşar E. A Fractional-Order Chemical System: Numerical Analysis with Distinct Variable-Order Derivatives. Journal of Mathematical Sciences and Modelling. 2025;8(4):185-94.

29237    Journal of Mathematical Sciences and Modelling 29238

                  29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.