Araştırma Makalesi
BibTex RIS Kaynak Göster

An investigation on quantitative detector characteristics of novel flexible skin dosimeter using Monte Carlo simulation method

Yıl 2022, , 100 - 110, 31.08.2022
https://doi.org/10.54187/jnrs.1103993

Öz

Novel lead oxide-based flexible dosimeters with superior performance were experimentally tested for electron therapy. However, absorbed/transmitted primary particle fraction and secondary radiation distribution from the dosimeter surface have not been reported. These features should be specified to improve the dosimeter’s reliability for medical applications. Hence, the absorbed primary particle fraction, transmitted particle and secondary radiations distributions of lead oxide-based flexible skin dosimeter under the incident 6 MeV electron radiation have been investigated by pyPenelope Monte Carlo Simulation. The results have demonstrated that the generated secondary irradiation probabilities are not significantly high to enhance the therapeutic dose abnormally. In addition, the angular distribution of the scattered secondary irradiations is low. No abnormal changes were observed in the fraction and energy distribution of the transmitted primary electrons. Hence, it can be concluded that the designed structure has promising potential to be used as dosimeters in electron beam therapy.

Teşekkür

The author would like to thank to Bolu Abant Izzet Baysal Univeristy- Mehmet Tanrıkulu Vocational School for providing an office type computer in order to perform simulation. The author also would like to thank to pyPENELOPE development group (http://pypenelope.sourceforge.net) for open source and free usage of the simulation package.

Kaynakça

  • P. E. Huber, J. Debus, D. Latz, D. Zierhut, M. Bischof, M. Wannenmacher, R. Engenhart-Cabillic, Radiotherapy for advanced adenoid cystic carcinoma: neutrons, photons or mixed beam?, Radiotherapy and Oncology, 59(2), (2001) 161–167.
  • N. Adnani, B. G. Fallone, Neutron therapy using medical linacs, in: J. D. Enderle (Ed.), Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2020, Chicago, USA, 2000, pp. 133–136.
  • W. Kawakami, S. Takamatsu, M. Taka, K. Ishii, T. Nakaichi, K. Funamoto, K. Yokoyama, Factors associated with radiation pneumonitis in patients receiving electron boost radiation for breast-conserving therapy: a retrospective review, Advances in Radiation Oncology, 5(6), (2020) 1141–1146.
  • S. C. S. Cunha, L. A. V. Carvalho, P. C. Canary, M. Reisner, K. B. Corgozinho, H. J. M. Souza, A. M. R. Ferreira, Radiation therapy for feline cutaneous squamous cell carcinoma using a hypofractionated protocol, Journal of Feline Medicine and Surgery, 12(4), (2010) 306–313.
  • S. Hyodynmaa, A. Gustafsson, A. Brahme, Optimisation of conformal electron beam therapy using energy- and fluence-modulated beams, Medical Physics, 23(5), (1996) 659–666.
  • J. Narbutt, A. Chrusciel, A. Rychter, J. Fijuth, A. Sysa-Jedrzejowska, A. Lesiak, Persistent improvement of previously recalcitrant Hailey-Hailey disease with electron beam radiotherapy, Acta Dermato-Venereologica, 90(2), (2010) 179–182.
  • A. M. Saadeldin, A. M. Elwan, Characterisation of irregular electron beam for boost dose after whole breast irradiation, Reports of Practical Oncology and Radiotherapy, 25(2), (2020) 168–173.
  • M. J. Han, S. W. Yang, S. I. Bae, Y. M. Moon, W. Jeon, C. W. Choi, S. K. Park, J. Y. Kim, Evaluation of monoxide film-based dosimeters for surface dose detection in electron therapy, Plos One, 16(5), (2021) Article ID: e0251441, 1–10.
  • L. E. Court, R. B. Tishler, A. M. Allen, H. Xiang, M. Makrigiorgos, L. Chin, Experimental evaluation of the accuracy of skin dose calculation for a commercial treatment planning system, Journal of Applied Clinical Medical Physics, 9(1), (2008) 29–35.
  • D. Manigandan, G. Bharanidharan, P. Aruna, K. Devan, D. Elangovan, V. Patil, R. Tamilarasan, S. Vasanthan, S. Ganesan, Dosimetric characteristics of a MOSFET dosimeter for clinical electron beams, Physica Medica-European Journal of Medical Physics, 25(3), (2009) 141–147.
  • A. G. Dias, D. F. S. Pinto, M. F. Borges, M. H. Pereira, J. A. M. Santos, L. T. Cunha, J. Lencart, Optimisation of skin dose using in-vivo MOSFET dose measurements in bolus/non-bolus fraction ratio: A VMAT and a 3DCRT study, Journal of Applied Clinical Medical Physics, 20(2), (2019) 63–70.
  • K. Oh, M. Han, J. Kim, Y. Heo, K. Kim, G. Cho, Y. Song, S. Cho, S. Heo, J. Kim, S. Park, S. Nam, Flexible X-ray detector for automatic exposure control in digital radiography, Journal of Nanoscience and Nanotechnology, 16, (2016) 11473–11476.
  • M. J. Han, S. W. Yang, S. I. Bae, Y. M. Moon, S. U. Heo, C. W. Choi, S. K. Park, J. Y. Kim, Evaluation of attenuation rate error for optimisation of skin dosimeter in electron beam therapy, Journal of Instrumentation, 15, (2020) Article ID: P07012.
  • N. Chaudhary, A. Singh, D. K. Aswal, A. K. Debnath, S. Samanta, S. P. Koiry, S. Sharma, K. Shah, S. Acharya, K. P. Muthe, S. C. Gadkari, Electron beam modified zinc phthalocyanine thin films for radiation dosimeter application, Synthetic Metals, 231, (2017) 143–152.
  • P. Dondero, A. Mantero, V. Ivanchencko, S. Lotti, T. Mineo, V. Fioretti, Electron backscattering simulation in Geant4, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 425, (2018) 18–25.
  • J. T. Rakowski, S. S. Laha, M. G. Snyder, M. G. Buczek, M. A. Tucker, F. C. Liu, G. Z. Mao, Y. Hillman, G. Lawes, Measurement of gold nanofilm dose enhancement using unlaminated radiochromic film, Medical Physics, 42(10), (2015) 5937–5944.
  • T. Shimozato, K. Okudaira, H. Fuse, K. Tabushi, Monte Carlo simulation and measurement of radiation leakage from applicators used in external electron radiotherapy, Physica Medica-European Journal of Medical Physics, 29(4), (2013) 388–396.
  • A. Kahraman, S. Kaya, A. Jaksic, E. Yilmaz, A comprehensive study on the photon energy response of RadFET dosimeters using the PENELOPE Monte Carlo code, Radiation Effects and Defects in Solids, 170(5), (2015) 367–376.
  • J. Sempau, P. Andreo, Configuration of the electron transport algorithm of PENELOPE to simulate ion chambers, Physics in Medicine and Biology, 51(14), (2006) 3533–3548.
  • M. Asai, M. A. Cortés-Giraldo, V. Giménez-Alventosa, V. Giménez Gómez, F. Salvat, The PENELOPE physics models and transport mechanics. implementation into Geant4, Frontiers in Physics, 9, (2021) Article ID: 738735, 1–20.
  • F. Salvat, Penelope: A Code System for Monte Carlo Simulation of Electron and Photon Transport, OECD Nuclear Energy Agency, 2019.
  • X. Llovet, F. Salvat, PENEPMA: a Monte Carlo programme for the simulation of X-ray emission in EPMA, IOP Conference Series: Materials Science and Engineering, 109, (2016) Article ID: 012009, 1–13.
  • X. Llovet and F. Salvat, PENEPMA: A Monte Carlo program for the simulation of X-Ray emission in electron probe microanalysis, Microscopy and Microanalysis, 23(3), (2017) 634–646.
  • J. S. Choi, D. W. Ko, J. Y. Seo, J. H. Nho, J. H. Chang, S. T. Lee, J. Y. Jung, M. J. Lee, Electrical and chemical sensing properties of a printed indium-tin-oxide film for the detection of hazardous and noxious substances, Journal of the Korean Physical Society, 76(11), (2020) 1005–1009.
  • S. W. Yang, M. J. Han, S. K. Park, J. B. Chung, J. K. Kang, T. S. Yu, J. E. Rah, J. K. Kim, M. W. Lee, J. Y. Kim, Development and evaluation of a monoxide-based flexible skin dosimeter for radiotherapy at photon energies, Journal of Instrumentation, 16, (2021) Article ID: P07056.
  • D. F. Craft, J. Lentz, M. Armstrong, M. Foster, J. Gagneur, D. Harrington, S.E. Schild, M. Fatyga, Three-dimensionally printed on-skin radiation shields using high-density filament, Practical Radiation Oncology, 10(6), (2020) e543–e550.
  • C. Y. Yi, S. H. Hah, M. S. Yeom, Monte Carlo calculation of the ionisation chamber response to Co-60 beam using PENELOPE, Medical Physics, 33(5), (2006) 1213–1221.
  • P. Adamson, C. Cannon, S. Williams, Bremsstrahlung produced by 5 keV electrons incident on BeO and NaCl, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 490, (2021) 43–47.
  • D. Gonzales, B. Cavness, S. Williams, Angular distribution of thick-target Bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on Ag, Physical Review A, 84, (2011) Article ID: 052726.
  • L. Tao, J. H. Wang, M. Esmaeelpour, C. S. Levin, Simulation studies to understand sensitivity of an optical property modulation-based radiation detection concept for PET, IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (Nss/Mic) 2018, Sydney, NSW, Australia, 2018 Article ID: 178.
  • L. Tao, D. Jeong, J. H. Wang, Z. Adams, P. Bryan, C. S. Levin, Simulation studies to understand sensitivity and timing characteristics of an optical property modulation-based radiation detection concept for PET, Physics in Medicine and Biology, 65, (2020) Article ID: 215021, 1–17.
  • P. Statham, X. Llovet, P. Duncumb, Systematic discrepancies in Monte Carlo predictions of k-ratios emitted from thin films on substrates, IOP Conference Series: Materials Science and Engineering, 32, (2012) Article ID: 012024, 1–7.
  • O. Lundh, C. Rechatin, J. Faure, A. Ben-Ismail, J. Lim, C. De Wagter, W. De Neve, V. Malka, Comparison of measured with calculated dose distribution from a 120-MeV electron beam from a laser-plasma accelerator, Medical Physics, 39(6), (2012) 3501–3508.
  • F. Salvat-Pujol, H. O. Jeschke, R. Valenti, Simulation of electron transport during electron-beam-induced deposition of nanostructures, Beilstein Journal of Nanotechnology, 4, (2013) 781–792.
  • H. R. Baghani, B. Aminafshar, In-field radiation contamination during intraoperative electron radiation therapy with a dedicated accelerator, Applied Radiation and Isotopes, 155, (2020) Article ID: 108918.
  • Y. H. Li, Z. An, J. J. Zhu, L. Li, Characteristic X-ray yields and cross sections of thick targets of Al, Ti, Zr, W and Au induced by keV-electron impact, Acta Physica Sinica, 69(13), (2020) Article ID: 133401, 1–13.
  • W. Kim, J. Jang, D. H. Kim, Monte Carlo simulation for the analysis of various solid samples using handheld X-ray fluorescence spectrometer and evaluation of the effect by environmental interferences, Spectrochimica Acta Part B-Atomic Spectroscopy, 180, (2021) Article ID: 106203, 1–9.
Yıl 2022, , 100 - 110, 31.08.2022
https://doi.org/10.54187/jnrs.1103993

Öz

Kaynakça

  • P. E. Huber, J. Debus, D. Latz, D. Zierhut, M. Bischof, M. Wannenmacher, R. Engenhart-Cabillic, Radiotherapy for advanced adenoid cystic carcinoma: neutrons, photons or mixed beam?, Radiotherapy and Oncology, 59(2), (2001) 161–167.
  • N. Adnani, B. G. Fallone, Neutron therapy using medical linacs, in: J. D. Enderle (Ed.), Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2020, Chicago, USA, 2000, pp. 133–136.
  • W. Kawakami, S. Takamatsu, M. Taka, K. Ishii, T. Nakaichi, K. Funamoto, K. Yokoyama, Factors associated with radiation pneumonitis in patients receiving electron boost radiation for breast-conserving therapy: a retrospective review, Advances in Radiation Oncology, 5(6), (2020) 1141–1146.
  • S. C. S. Cunha, L. A. V. Carvalho, P. C. Canary, M. Reisner, K. B. Corgozinho, H. J. M. Souza, A. M. R. Ferreira, Radiation therapy for feline cutaneous squamous cell carcinoma using a hypofractionated protocol, Journal of Feline Medicine and Surgery, 12(4), (2010) 306–313.
  • S. Hyodynmaa, A. Gustafsson, A. Brahme, Optimisation of conformal electron beam therapy using energy- and fluence-modulated beams, Medical Physics, 23(5), (1996) 659–666.
  • J. Narbutt, A. Chrusciel, A. Rychter, J. Fijuth, A. Sysa-Jedrzejowska, A. Lesiak, Persistent improvement of previously recalcitrant Hailey-Hailey disease with electron beam radiotherapy, Acta Dermato-Venereologica, 90(2), (2010) 179–182.
  • A. M. Saadeldin, A. M. Elwan, Characterisation of irregular electron beam for boost dose after whole breast irradiation, Reports of Practical Oncology and Radiotherapy, 25(2), (2020) 168–173.
  • M. J. Han, S. W. Yang, S. I. Bae, Y. M. Moon, W. Jeon, C. W. Choi, S. K. Park, J. Y. Kim, Evaluation of monoxide film-based dosimeters for surface dose detection in electron therapy, Plos One, 16(5), (2021) Article ID: e0251441, 1–10.
  • L. E. Court, R. B. Tishler, A. M. Allen, H. Xiang, M. Makrigiorgos, L. Chin, Experimental evaluation of the accuracy of skin dose calculation for a commercial treatment planning system, Journal of Applied Clinical Medical Physics, 9(1), (2008) 29–35.
  • D. Manigandan, G. Bharanidharan, P. Aruna, K. Devan, D. Elangovan, V. Patil, R. Tamilarasan, S. Vasanthan, S. Ganesan, Dosimetric characteristics of a MOSFET dosimeter for clinical electron beams, Physica Medica-European Journal of Medical Physics, 25(3), (2009) 141–147.
  • A. G. Dias, D. F. S. Pinto, M. F. Borges, M. H. Pereira, J. A. M. Santos, L. T. Cunha, J. Lencart, Optimisation of skin dose using in-vivo MOSFET dose measurements in bolus/non-bolus fraction ratio: A VMAT and a 3DCRT study, Journal of Applied Clinical Medical Physics, 20(2), (2019) 63–70.
  • K. Oh, M. Han, J. Kim, Y. Heo, K. Kim, G. Cho, Y. Song, S. Cho, S. Heo, J. Kim, S. Park, S. Nam, Flexible X-ray detector for automatic exposure control in digital radiography, Journal of Nanoscience and Nanotechnology, 16, (2016) 11473–11476.
  • M. J. Han, S. W. Yang, S. I. Bae, Y. M. Moon, S. U. Heo, C. W. Choi, S. K. Park, J. Y. Kim, Evaluation of attenuation rate error for optimisation of skin dosimeter in electron beam therapy, Journal of Instrumentation, 15, (2020) Article ID: P07012.
  • N. Chaudhary, A. Singh, D. K. Aswal, A. K. Debnath, S. Samanta, S. P. Koiry, S. Sharma, K. Shah, S. Acharya, K. P. Muthe, S. C. Gadkari, Electron beam modified zinc phthalocyanine thin films for radiation dosimeter application, Synthetic Metals, 231, (2017) 143–152.
  • P. Dondero, A. Mantero, V. Ivanchencko, S. Lotti, T. Mineo, V. Fioretti, Electron backscattering simulation in Geant4, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 425, (2018) 18–25.
  • J. T. Rakowski, S. S. Laha, M. G. Snyder, M. G. Buczek, M. A. Tucker, F. C. Liu, G. Z. Mao, Y. Hillman, G. Lawes, Measurement of gold nanofilm dose enhancement using unlaminated radiochromic film, Medical Physics, 42(10), (2015) 5937–5944.
  • T. Shimozato, K. Okudaira, H. Fuse, K. Tabushi, Monte Carlo simulation and measurement of radiation leakage from applicators used in external electron radiotherapy, Physica Medica-European Journal of Medical Physics, 29(4), (2013) 388–396.
  • A. Kahraman, S. Kaya, A. Jaksic, E. Yilmaz, A comprehensive study on the photon energy response of RadFET dosimeters using the PENELOPE Monte Carlo code, Radiation Effects and Defects in Solids, 170(5), (2015) 367–376.
  • J. Sempau, P. Andreo, Configuration of the electron transport algorithm of PENELOPE to simulate ion chambers, Physics in Medicine and Biology, 51(14), (2006) 3533–3548.
  • M. Asai, M. A. Cortés-Giraldo, V. Giménez-Alventosa, V. Giménez Gómez, F. Salvat, The PENELOPE physics models and transport mechanics. implementation into Geant4, Frontiers in Physics, 9, (2021) Article ID: 738735, 1–20.
  • F. Salvat, Penelope: A Code System for Monte Carlo Simulation of Electron and Photon Transport, OECD Nuclear Energy Agency, 2019.
  • X. Llovet, F. Salvat, PENEPMA: a Monte Carlo programme for the simulation of X-ray emission in EPMA, IOP Conference Series: Materials Science and Engineering, 109, (2016) Article ID: 012009, 1–13.
  • X. Llovet and F. Salvat, PENEPMA: A Monte Carlo program for the simulation of X-Ray emission in electron probe microanalysis, Microscopy and Microanalysis, 23(3), (2017) 634–646.
  • J. S. Choi, D. W. Ko, J. Y. Seo, J. H. Nho, J. H. Chang, S. T. Lee, J. Y. Jung, M. J. Lee, Electrical and chemical sensing properties of a printed indium-tin-oxide film for the detection of hazardous and noxious substances, Journal of the Korean Physical Society, 76(11), (2020) 1005–1009.
  • S. W. Yang, M. J. Han, S. K. Park, J. B. Chung, J. K. Kang, T. S. Yu, J. E. Rah, J. K. Kim, M. W. Lee, J. Y. Kim, Development and evaluation of a monoxide-based flexible skin dosimeter for radiotherapy at photon energies, Journal of Instrumentation, 16, (2021) Article ID: P07056.
  • D. F. Craft, J. Lentz, M. Armstrong, M. Foster, J. Gagneur, D. Harrington, S.E. Schild, M. Fatyga, Three-dimensionally printed on-skin radiation shields using high-density filament, Practical Radiation Oncology, 10(6), (2020) e543–e550.
  • C. Y. Yi, S. H. Hah, M. S. Yeom, Monte Carlo calculation of the ionisation chamber response to Co-60 beam using PENELOPE, Medical Physics, 33(5), (2006) 1213–1221.
  • P. Adamson, C. Cannon, S. Williams, Bremsstrahlung produced by 5 keV electrons incident on BeO and NaCl, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 490, (2021) 43–47.
  • D. Gonzales, B. Cavness, S. Williams, Angular distribution of thick-target Bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on Ag, Physical Review A, 84, (2011) Article ID: 052726.
  • L. Tao, J. H. Wang, M. Esmaeelpour, C. S. Levin, Simulation studies to understand sensitivity of an optical property modulation-based radiation detection concept for PET, IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (Nss/Mic) 2018, Sydney, NSW, Australia, 2018 Article ID: 178.
  • L. Tao, D. Jeong, J. H. Wang, Z. Adams, P. Bryan, C. S. Levin, Simulation studies to understand sensitivity and timing characteristics of an optical property modulation-based radiation detection concept for PET, Physics in Medicine and Biology, 65, (2020) Article ID: 215021, 1–17.
  • P. Statham, X. Llovet, P. Duncumb, Systematic discrepancies in Monte Carlo predictions of k-ratios emitted from thin films on substrates, IOP Conference Series: Materials Science and Engineering, 32, (2012) Article ID: 012024, 1–7.
  • O. Lundh, C. Rechatin, J. Faure, A. Ben-Ismail, J. Lim, C. De Wagter, W. De Neve, V. Malka, Comparison of measured with calculated dose distribution from a 120-MeV electron beam from a laser-plasma accelerator, Medical Physics, 39(6), (2012) 3501–3508.
  • F. Salvat-Pujol, H. O. Jeschke, R. Valenti, Simulation of electron transport during electron-beam-induced deposition of nanostructures, Beilstein Journal of Nanotechnology, 4, (2013) 781–792.
  • H. R. Baghani, B. Aminafshar, In-field radiation contamination during intraoperative electron radiation therapy with a dedicated accelerator, Applied Radiation and Isotopes, 155, (2020) Article ID: 108918.
  • Y. H. Li, Z. An, J. J. Zhu, L. Li, Characteristic X-ray yields and cross sections of thick targets of Al, Ti, Zr, W and Au induced by keV-electron impact, Acta Physica Sinica, 69(13), (2020) Article ID: 133401, 1–13.
  • W. Kim, J. Jang, D. H. Kim, Monte Carlo simulation for the analysis of various solid samples using handheld X-ray fluorescence spectrometer and evaluation of the effect by environmental interferences, Spectrochimica Acta Part B-Atomic Spectroscopy, 180, (2021) Article ID: 106203, 1–9.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Şenol Kaya 0000-0001-8152-9122

Yayımlanma Tarihi 31 Ağustos 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Kaya, Ş. (2022). An investigation on quantitative detector characteristics of novel flexible skin dosimeter using Monte Carlo simulation method. Journal of New Results in Science, 11(2), 100-110. https://doi.org/10.54187/jnrs.1103993
AMA Kaya Ş. An investigation on quantitative detector characteristics of novel flexible skin dosimeter using Monte Carlo simulation method. JNRS. Ağustos 2022;11(2):100-110. doi:10.54187/jnrs.1103993
Chicago Kaya, Şenol. “An Investigation on Quantitative Detector Characteristics of Novel Flexible Skin Dosimeter Using Monte Carlo Simulation Method”. Journal of New Results in Science 11, sy. 2 (Ağustos 2022): 100-110. https://doi.org/10.54187/jnrs.1103993.
EndNote Kaya Ş (01 Ağustos 2022) An investigation on quantitative detector characteristics of novel flexible skin dosimeter using Monte Carlo simulation method. Journal of New Results in Science 11 2 100–110.
IEEE Ş. Kaya, “An investigation on quantitative detector characteristics of novel flexible skin dosimeter using Monte Carlo simulation method”, JNRS, c. 11, sy. 2, ss. 100–110, 2022, doi: 10.54187/jnrs.1103993.
ISNAD Kaya, Şenol. “An Investigation on Quantitative Detector Characteristics of Novel Flexible Skin Dosimeter Using Monte Carlo Simulation Method”. Journal of New Results in Science 11/2 (Ağustos 2022), 100-110. https://doi.org/10.54187/jnrs.1103993.
JAMA Kaya Ş. An investigation on quantitative detector characteristics of novel flexible skin dosimeter using Monte Carlo simulation method. JNRS. 2022;11:100–110.
MLA Kaya, Şenol. “An Investigation on Quantitative Detector Characteristics of Novel Flexible Skin Dosimeter Using Monte Carlo Simulation Method”. Journal of New Results in Science, c. 11, sy. 2, 2022, ss. 100-1, doi:10.54187/jnrs.1103993.
Vancouver Kaya Ş. An investigation on quantitative detector characteristics of novel flexible skin dosimeter using Monte Carlo simulation method. JNRS. 2022;11(2):100-1.


TR Dizin 31688

EBSCO30456


Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).