BibTex RIS Cite

Stability Of a Quadratic Functional Equation in Intuitionistic Fuzzy Banach Spaces

Year 2016, Volume: 5 Issue: 10, 52 - 59, 05.05.2016

Abstract

Hyers-Ulam-Rassias stability theorem has been applied to several functional equations for studying stability in case of approximation of a given functional equation in Banach spaces, fuzzy Banach spaces etc. In this paper, we wish to study generalized Hyers-Ulam-Rassias stability regarding the approximation
of the following quadratic functional equation
f(2x + y) f(x + 2y) = 3f(x) 3f(y) (1)
in intuitionistic fuzzy Banach spaces.

References

  • K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
  • C. Borelli, G. L. Forti, On a general Hyers Ulam stability, Internat. J. Math. Math.Sci., 18 (1995), 229 − 236.
  • P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27. 76 − 86 (1984).
  • S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992) , 59 − 64.
  • G. Deschrijiver, E. E. Kerre, on the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems 23 (2003), 227 − 235.
  • D. H. Hyers, On the stability of the linear functional equation, Proc. Nat.Acad.Sci.U.S.A. 27 (1941), 222 − 224.
  • Kil-Woung Jun, Hark-Mann Kim and Don o Lee, on the stability of a quadratic functional equation, J.Chungcheeng Math. Soc., volume 15, no.-2(Dec.2002), 73 −84 .
  • N. C. Kayal, P. Mondal, T. K. Samanta, The Generalized Hyers-Ulam-Rassias Stability of a Quadratic Functional Equation in Fuzzy Banach Spaces, Journal of New Results in Science, 5 (2014) 83 − 95.
  • J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22 (2004), 1039 − 1046.
  • Th.M.Rassias, on the stability of the functional equations in Banach spaces, J.Math. Anal.Appl. 251(2000), 264 − 284.
  • R. Saadati, J. H. Park, On Intuitionistic fuzzy topological spaces , Chaos , Solitons and Fractals 27 (2006) ,331 − 344.
  • R. Saadati, J. H. Park, On Intuitionistic fuzzy Euclidean normed spaces, Commun. Math. Anal., 1 (2006) , 85 − 90.
  • T. K. Samanta, P. Mondal, N. C. Kayal, The generalized Hyers-Ulam-Rassias stability of a quadratic functional equation in fuzzy Banach spaces, Annals of Fuzzy Mathematics and Informatics Volume 6, No. 2, (2013), pp. 59 − 68.
  • S. Shakeri, Intutionistic fuzzy stability of Jenson Type Mapping, J.Non linear Sc. Appl.2 (2009),no.-2,105 − 112.
  • F. Skof, Proprieta locali e approssimazione di opratori, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113 − 129.
  • S. M. Ulam, Problems in Modern Mathematics, Chapter vi, Science Editions, Wiley, New York, 1964.
  • L. A. Zadeh, Fuzzy sets, Information and control, 8 (1965) 338 − 353.
Year 2016, Volume: 5 Issue: 10, 52 - 59, 05.05.2016

Abstract

References

  • K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
  • C. Borelli, G. L. Forti, On a general Hyers Ulam stability, Internat. J. Math. Math.Sci., 18 (1995), 229 − 236.
  • P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27. 76 − 86 (1984).
  • S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992) , 59 − 64.
  • G. Deschrijiver, E. E. Kerre, on the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems 23 (2003), 227 − 235.
  • D. H. Hyers, On the stability of the linear functional equation, Proc. Nat.Acad.Sci.U.S.A. 27 (1941), 222 − 224.
  • Kil-Woung Jun, Hark-Mann Kim and Don o Lee, on the stability of a quadratic functional equation, J.Chungcheeng Math. Soc., volume 15, no.-2(Dec.2002), 73 −84 .
  • N. C. Kayal, P. Mondal, T. K. Samanta, The Generalized Hyers-Ulam-Rassias Stability of a Quadratic Functional Equation in Fuzzy Banach Spaces, Journal of New Results in Science, 5 (2014) 83 − 95.
  • J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22 (2004), 1039 − 1046.
  • Th.M.Rassias, on the stability of the functional equations in Banach spaces, J.Math. Anal.Appl. 251(2000), 264 − 284.
  • R. Saadati, J. H. Park, On Intuitionistic fuzzy topological spaces , Chaos , Solitons and Fractals 27 (2006) ,331 − 344.
  • R. Saadati, J. H. Park, On Intuitionistic fuzzy Euclidean normed spaces, Commun. Math. Anal., 1 (2006) , 85 − 90.
  • T. K. Samanta, P. Mondal, N. C. Kayal, The generalized Hyers-Ulam-Rassias stability of a quadratic functional equation in fuzzy Banach spaces, Annals of Fuzzy Mathematics and Informatics Volume 6, No. 2, (2013), pp. 59 − 68.
  • S. Shakeri, Intutionistic fuzzy stability of Jenson Type Mapping, J.Non linear Sc. Appl.2 (2009),no.-2,105 − 112.
  • F. Skof, Proprieta locali e approssimazione di opratori, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113 − 129.
  • S. M. Ulam, Problems in Modern Mathematics, Chapter vi, Science Editions, Wiley, New York, 1964.
  • L. A. Zadeh, Fuzzy sets, Information and control, 8 (1965) 338 − 353.
There are 17 citations in total.

Details

Journal Section Articles
Authors

Pratap Mondal This is me

Nabin Chandra Kayal This is me

T K Samanta This is me

Publication Date May 5, 2016
Published in Issue Year 2016 Volume: 5 Issue: 10

Cite

APA Mondal, P., Kayal, N. C., & Samanta, T. K. (2016). Stability Of a Quadratic Functional Equation in Intuitionistic Fuzzy Banach Spaces. Journal of New Results in Science, 5(10), 52-59.
AMA Mondal P, Kayal NC, Samanta TK. Stability Of a Quadratic Functional Equation in Intuitionistic Fuzzy Banach Spaces. JNRS. February 2016;5(10):52-59.
Chicago Mondal, Pratap, Nabin Chandra Kayal, and T K Samanta. “Stability Of a Quadratic Functional Equation in Intuitionistic Fuzzy Banach Spaces”. Journal of New Results in Science 5, no. 10 (February 2016): 52-59.
EndNote Mondal P, Kayal NC, Samanta TK (February 1, 2016) Stability Of a Quadratic Functional Equation in Intuitionistic Fuzzy Banach Spaces. Journal of New Results in Science 5 10 52–59.
IEEE P. Mondal, N. C. Kayal, and T. K. Samanta, “Stability Of a Quadratic Functional Equation in Intuitionistic Fuzzy Banach Spaces”, JNRS, vol. 5, no. 10, pp. 52–59, 2016.
ISNAD Mondal, Pratap et al. “Stability Of a Quadratic Functional Equation in Intuitionistic Fuzzy Banach Spaces”. Journal of New Results in Science 5/10 (February 2016), 52-59.
JAMA Mondal P, Kayal NC, Samanta TK. Stability Of a Quadratic Functional Equation in Intuitionistic Fuzzy Banach Spaces. JNRS. 2016;5:52–59.
MLA Mondal, Pratap et al. “Stability Of a Quadratic Functional Equation in Intuitionistic Fuzzy Banach Spaces”. Journal of New Results in Science, vol. 5, no. 10, 2016, pp. 52-59.
Vancouver Mondal P, Kayal NC, Samanta TK. Stability Of a Quadratic Functional Equation in Intuitionistic Fuzzy Banach Spaces. JNRS. 2016;5(10):52-9.


TR Dizin 31688

EBSCO30456


Electronic Journals Library   30356

 DOAJ   30355

                                                        WorldCat  3035730355

Scilit 30360


SOBİAD 30359


29388 JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).