BibTex RIS Cite

Method/Basis Set Investigation and Spectral Studies for Oximato-Bridged trans-Platinum(II) Dimer Used as Anticancer Drug

Year 2015, Volume: 4 Issue: 8, 1 - 12, 29.05.2015

Abstract

– Optimized molecular structure and vibrational spectra of oximatobridged platinum(II) complex are investigated with different methods (HF, MP2, pure and hybrid DFT functions) and basis sets (CEP-4G, CEP-31G, CEP121G, LANL2DZ, LANL2MB, SDD). Correlation coefficients of bond lengths and angles, CPU computational time and vibrational frequencies were used to determine the best method and basis set. The results show that HF/CEP-31G and MP2/CEP-31G are the best levels for optimized molecular structure and vibrational spectra, respectively. The UV-VIS and 1H-NMR spectra of mentioned complex are calculated by using HF/CEP-31G level. The active sites of this complex are determined by using molecular electrostatic potential (MEP) map

References

  • Y. Y. Scaffidi-Domianello, K. Meelich, M. A. Jakupec, V. B. Arion, V. Y. Kukushkin, M. Galanski, B. K. Keppler, Novel Cis- and Trans-Configured Bis(oxime)platinum(II) Complexes: Synthesis, Characterization, and Cytotoxic Activity, Inorg. Chem. 49 (2010) 5669-5678.
  • C. Bartel, A. K. Bytzek, Y. Y. Scaffidi-Domianello, G. Grabmann, M. A. Jakupec, C. G. Hartinger, M. Galanski, B. K. Keppler, Cellular accumulation and DNA interaction studies of cytotoxic trans-platinum anticancer compounds, Biol. Inorg. Chem. 17 (2012) 465-474.
  • A. J. Karaker, J. D. Hoeschele, W. L. Elliott, H. D. Showalter, L. S. Hollis, A. D. Sercel, N. P. Farrell, Anticancer activity in murine and human tumor cell lines of bis(platinum) complexes incorporating straight-chain aliphatic diamine linker groups, J. Med. Chem. 35 (1992) 4526-4532.
  • P. K. Wu, Y. Qu, B. Van Houten, N. Farrell, Chemical reactivity and DNA sequence specificity of formally monofunctional and bifunctional bis(platinum) complexes, J. Inorg. Biochem. 54 (1994) 207-220.
  • N. Farrell, T. G. Appleton, Y. Qu, J. D. Roberts, A. P. S. Fontes, K. A. Skov, P. Wu, Y. Zou, Effects of Geometric Isomerism and Ligand Substitution in Bifunctional Dinuclear Platinum Complexes on Binding Properties and Conformational Changes in DNA, Biochemistry 34 (1995) 15480-15486.
  • Y. Qu, M. J. Bloemink, J. Reedijk, T. W. Hambley, N. Farrell, Dinuclear Platinum Complexes an anti−syn Conformation of the Macrochelate As Observed by NMR and Molecular Modeling, J. Am. Chem. Soc. 118 (1996) 9307-9313. Adduct with d(GpG),
  • N. Farrell, E. Menta, M. Valsecchi, R. Di Domenico, G. Da Re, C. Manzotti, G. Pezzoni, F. C. Giuliani, S. Spinelli, Chemical and biological properties of a novel bifunctional triplatinum phase I clinical agent, J. Inorg. Biochem. 67 (1997) 173.
  • Y. Qu, N. Farrell, J. Kasparkova, V. Brabec, DNA binding of properties of trinuclear platinum complex, J. Inorg. Biochem. 67 (1997) 174.
  • P. Perego, C. Caserini, L. Gatti, N. Carenini, S. Romanelli, R. Supino, D. Colangelo, I. Viano, R. Leone, S. Spinelli, G. Pezzoni, C. Manzotti, N. Farrell, F. Zunino F., A Novel Trinuclear Platinum Complex Overcomes Cisplatin Resistance in an Osteosarcoma Cell System, Mol. Pharmacol. 55 (1999) 528-534.
  • M. B. G. Kloster, J. C. Hannis, D. C. Muddiman, N. Farrell, Consequences of Nucleic Acid Conformation on the Binding of a Trinuclear Platinum Drug, Biochemistry 38 (1999) 14731-14737.
  • Y. Qu., H. Rauter, A. P. S. Fontes, R. Bandarage, L. R. Kelland, N. Farrell, Synthesis, Characterization, and Cytotoxicity of Trifunctional Dinuclear Platinum Complexes:  Comparison of Effects of Geometry and Polyfunctionality on Biological Activity, J. Med. Chem. 43 (2000) 3189-3192.
  • J. W. Cox, S. J. Berners-Price, M. S. Davies, Y. Qu, N. Farrell, Kinetic Analysis of the Stepwise Formation of a Long-Range DNA Interstrand Cross-link by a Dinuclear Platinum Antitumor Complex:  Evidence for Aquated Intermediates and Formation of Both Kinetically and Thermodynamically Controlled Conformers, J. Am. Chem. Soc. 123 (2001) 1316-1326.
  • D. Fan, X. Yang, X. Wang, S. Zhang, J. Mao, J. Ding, L. Lin, Z. Guo, A dinuclear monofunctional platinum(II) complex with an aromatic linker shows low reactivity towards glutathione but high DNA binding ability and antitumor, J. Biol. Inorg. Chem. 12 (2007) 655-665.
  • Y. Y. Scaffidi-Domianello, A. A. Legin, M. A. Jakupec, A. Roller, V. Y. Kukushkin, M. Galanski, B. K. Keppler, Novel Oximato-Bridged Platinum(II) Di- and Trimer(s): Synthetic, Structural, and in Vitro Anticancer Activity Studies, Inorg. Chem. 51 (2012) 7153-7163.
  • B. Giese, G. B. Deacon, J. Kuduk-Jaworska, D. McNaughton, Density functional theory and surface enhanced Raman spectroscopy characterization of novel platinum drugs, Biopolymers 67 (2002) 294-297.
  • H. Baranĭska, J. Kuduk-Jaworska, J. Baran, Asian J. Phys. 7 (1998) 265-271.
  • R. Wysokinski, J. Kuduk-Jaworska, D. Michalska, Electronic structure, Raman and infrared spectra, and vibrational assignment of carboplatin. Density functional theory studies, J. Mol. Struct.: THEOCHEM 758 (2006) 169-179.
  • E. Tornaghi, W. Andreeoni, P. Carloni, J. Hutter, M. Parinello, Carboplatin versus cisplatin: density functional approach to their molecular properties, Chem. Phys. Lett. 246 (1995) 469-474.
  • C. Adamo, V. Barone, Exchange functionals with improved long-range behavior and adiabatic connection The mPW and mPW1PW models, J. Chem. Phys. 108 (1998) 664-675. methods without adjustable parameters:
  • H. Gao, Theoretical studies of molecular structures and properties of platinum (II) antitumor drugs, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 79 (2011) 687-693.
  • GaussView, Version 5, Roy Dennington, Todd Keith and John Millam, Semichem Inc., Shawnee Mission KS, 2009.
  • P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, J. Phys. Chem. 98 (1994) 11623-11627.
  • A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648-5662.
  • A. Moores, N. Mezailles, L. Ricard, Y. Jean, P. le Floch, η2-Palladium and Platinum(II) Complexes of a λ4-Phosphinine Anion:  Syntheses, X-ray Crystal Structures, and DFT Calculations, Organometallics 23 (2004) 2870-2875.
  • C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988) 785-789.
  • J. P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B 33 (1986) 8822-8824.
  • A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988) 3098-3100.
  • J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron- gas correlation energy, Phys. Rev. B 45 (1992) 13244-13249.
  • J. P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B 54 (1996) 16533-16539.
  • K. Burke, J. P. Perdew, Y. Wang, in: J. F. Dobson, G. Vignale, M. P. Das (Eds.), Plenum Press, 1998.
  • S. H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 58 (1980) 1200-1211.
  • W. P. Ozimiński, P. Garnuszek, E. Bednarek, Jan Cz. Dobrowolski, The platinum complexes with histamine: Pt(II)(Hist)Cl2, Pt(II)(Iodo-Hist)Cl2 and Pt(IV)(Hist)2Cl2, Inorg. Chim. Acta 360 (2007) 1902-1914.
  • Lin Zhang, Yu Zhang, Hanbing Tao, Xiaojuan Sun, Zijian Guo, Longgen Zhu, Theoretical calculation on far-infrared spectra of some palladium(II) and platinum(II) halides: effect of theoretical methods and basis sets, J. Mol. Struct.: THEOCHEM 617 (2002) 87-97.
  • D. Karakaş, K. Sayin, DFT and TD-DFT studies on copper(II) complexes with tripodal tetramine ligands, Indian J. Chem. 52A (2013) 480-485.
  • T. H. Jr. Dunning, P. J. Hay, in: H. F. Schaefer III (Ed.), Modern Theoretical Chemistry, Plenum, New York, 1976.
  • M. Dolg, H. Stoll, H. –J. Flad, H. Preuss, Ab initio pseudopotential study of Yb and YbO, J. Chem. Phys. 97 (1992) 1162-1173.
  • X. Y. Cao, M. Dolg, Segmented contraction scheme for small-core lanthanide pseudopotential basis sets, J. Mol. Struct.: THEOCHEM 581 (2002) 139-147.
  • J. B. Collins, P. V. R. Schleyer, J. S. Binkley, J. A. Pople, Self-consistent molecular orbital methods. XVII. Geometries and binding energies of second-row molecules. A comparison of basis sets, J. Chem. Phys. 64 (1976) 5142-5151.
  • P. J. Hay, W. R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys. 82 (1985) 270-283.
  • S. Kohara, N. Koura, Y. Idemoto, S. Takahashi, M. L. Sabooungi, L. A. Curtiss, The Structure of LiKCO3 by AB Initio Calculations and Raman Spectroscopy, J. Phys. Chem. Solids 59 (1998) 1477-1485.
  • W. J. Stevens, H. Basch, M. Krauss, Compact effective potentials and efficient shared-exponent basis sets for the first- and second row atoms, J. Chem. Phys. 81 (1984) 6026-6033.
  • W. J. Stevens, M. Krauss, H. Basch, P. G. Jasien, Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth- row atoms, Can. J. Chem. 70 (1992) 612-630.
  • T. R. Cundari, W. J. Stevens, Effective core potential methods for the lanthanides, J. Chem. Phys. 98 (1993) 5555-5565.
  • Amareshwar Kumar Rai, Xuee Xu, Zijing Lin, D.K. Rai, Conformational search for zwitterionic leucine and hydrated conformers of both the canonical and zwitterionic leucine using the DFT-CPCM model, Vibrational Spectroscopy 56 (2011) 74-81.
  • K. Sayın, D. Karakaş, Quantum chemical studies on the some inorganic corrosion inhibitors, Corros. Sci. 77 (2013) 37-45.
  • Xiao-Ying Hu, Xiao-Juan Liu, Ji-Kang Feng, Theoretical Investigation on the Absorption and Emission Properties of the Three Isomers of Bis(thiocyanato)(2,2′- bipyridyl)platinum(II), Chinese J. Chem. 25 (2007) 1370-1378.
  • K. Sayın, D. Karakaş, Determination of structural and electronic properties of [Ni(NQSC)2 complexes with DFT method, Journal of New Results in Science 2 (2013) 47-53.
  • K. Sayın, D. Karakaş, Quantum chemical studies on [Co(ntb)(pic)]+ complex ion, Journal of New Results in Science 2 (2013) 54-59.
Year 2015, Volume: 4 Issue: 8, 1 - 12, 29.05.2015

Abstract

References

  • Y. Y. Scaffidi-Domianello, K. Meelich, M. A. Jakupec, V. B. Arion, V. Y. Kukushkin, M. Galanski, B. K. Keppler, Novel Cis- and Trans-Configured Bis(oxime)platinum(II) Complexes: Synthesis, Characterization, and Cytotoxic Activity, Inorg. Chem. 49 (2010) 5669-5678.
  • C. Bartel, A. K. Bytzek, Y. Y. Scaffidi-Domianello, G. Grabmann, M. A. Jakupec, C. G. Hartinger, M. Galanski, B. K. Keppler, Cellular accumulation and DNA interaction studies of cytotoxic trans-platinum anticancer compounds, Biol. Inorg. Chem. 17 (2012) 465-474.
  • A. J. Karaker, J. D. Hoeschele, W. L. Elliott, H. D. Showalter, L. S. Hollis, A. D. Sercel, N. P. Farrell, Anticancer activity in murine and human tumor cell lines of bis(platinum) complexes incorporating straight-chain aliphatic diamine linker groups, J. Med. Chem. 35 (1992) 4526-4532.
  • P. K. Wu, Y. Qu, B. Van Houten, N. Farrell, Chemical reactivity and DNA sequence specificity of formally monofunctional and bifunctional bis(platinum) complexes, J. Inorg. Biochem. 54 (1994) 207-220.
  • N. Farrell, T. G. Appleton, Y. Qu, J. D. Roberts, A. P. S. Fontes, K. A. Skov, P. Wu, Y. Zou, Effects of Geometric Isomerism and Ligand Substitution in Bifunctional Dinuclear Platinum Complexes on Binding Properties and Conformational Changes in DNA, Biochemistry 34 (1995) 15480-15486.
  • Y. Qu, M. J. Bloemink, J. Reedijk, T. W. Hambley, N. Farrell, Dinuclear Platinum Complexes an anti−syn Conformation of the Macrochelate As Observed by NMR and Molecular Modeling, J. Am. Chem. Soc. 118 (1996) 9307-9313. Adduct with d(GpG),
  • N. Farrell, E. Menta, M. Valsecchi, R. Di Domenico, G. Da Re, C. Manzotti, G. Pezzoni, F. C. Giuliani, S. Spinelli, Chemical and biological properties of a novel bifunctional triplatinum phase I clinical agent, J. Inorg. Biochem. 67 (1997) 173.
  • Y. Qu, N. Farrell, J. Kasparkova, V. Brabec, DNA binding of properties of trinuclear platinum complex, J. Inorg. Biochem. 67 (1997) 174.
  • P. Perego, C. Caserini, L. Gatti, N. Carenini, S. Romanelli, R. Supino, D. Colangelo, I. Viano, R. Leone, S. Spinelli, G. Pezzoni, C. Manzotti, N. Farrell, F. Zunino F., A Novel Trinuclear Platinum Complex Overcomes Cisplatin Resistance in an Osteosarcoma Cell System, Mol. Pharmacol. 55 (1999) 528-534.
  • M. B. G. Kloster, J. C. Hannis, D. C. Muddiman, N. Farrell, Consequences of Nucleic Acid Conformation on the Binding of a Trinuclear Platinum Drug, Biochemistry 38 (1999) 14731-14737.
  • Y. Qu., H. Rauter, A. P. S. Fontes, R. Bandarage, L. R. Kelland, N. Farrell, Synthesis, Characterization, and Cytotoxicity of Trifunctional Dinuclear Platinum Complexes:  Comparison of Effects of Geometry and Polyfunctionality on Biological Activity, J. Med. Chem. 43 (2000) 3189-3192.
  • J. W. Cox, S. J. Berners-Price, M. S. Davies, Y. Qu, N. Farrell, Kinetic Analysis of the Stepwise Formation of a Long-Range DNA Interstrand Cross-link by a Dinuclear Platinum Antitumor Complex:  Evidence for Aquated Intermediates and Formation of Both Kinetically and Thermodynamically Controlled Conformers, J. Am. Chem. Soc. 123 (2001) 1316-1326.
  • D. Fan, X. Yang, X. Wang, S. Zhang, J. Mao, J. Ding, L. Lin, Z. Guo, A dinuclear monofunctional platinum(II) complex with an aromatic linker shows low reactivity towards glutathione but high DNA binding ability and antitumor, J. Biol. Inorg. Chem. 12 (2007) 655-665.
  • Y. Y. Scaffidi-Domianello, A. A. Legin, M. A. Jakupec, A. Roller, V. Y. Kukushkin, M. Galanski, B. K. Keppler, Novel Oximato-Bridged Platinum(II) Di- and Trimer(s): Synthetic, Structural, and in Vitro Anticancer Activity Studies, Inorg. Chem. 51 (2012) 7153-7163.
  • B. Giese, G. B. Deacon, J. Kuduk-Jaworska, D. McNaughton, Density functional theory and surface enhanced Raman spectroscopy characterization of novel platinum drugs, Biopolymers 67 (2002) 294-297.
  • H. Baranĭska, J. Kuduk-Jaworska, J. Baran, Asian J. Phys. 7 (1998) 265-271.
  • R. Wysokinski, J. Kuduk-Jaworska, D. Michalska, Electronic structure, Raman and infrared spectra, and vibrational assignment of carboplatin. Density functional theory studies, J. Mol. Struct.: THEOCHEM 758 (2006) 169-179.
  • E. Tornaghi, W. Andreeoni, P. Carloni, J. Hutter, M. Parinello, Carboplatin versus cisplatin: density functional approach to their molecular properties, Chem. Phys. Lett. 246 (1995) 469-474.
  • C. Adamo, V. Barone, Exchange functionals with improved long-range behavior and adiabatic connection The mPW and mPW1PW models, J. Chem. Phys. 108 (1998) 664-675. methods without adjustable parameters:
  • H. Gao, Theoretical studies of molecular structures and properties of platinum (II) antitumor drugs, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 79 (2011) 687-693.
  • GaussView, Version 5, Roy Dennington, Todd Keith and John Millam, Semichem Inc., Shawnee Mission KS, 2009.
  • P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, J. Phys. Chem. 98 (1994) 11623-11627.
  • A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648-5662.
  • A. Moores, N. Mezailles, L. Ricard, Y. Jean, P. le Floch, η2-Palladium and Platinum(II) Complexes of a λ4-Phosphinine Anion:  Syntheses, X-ray Crystal Structures, and DFT Calculations, Organometallics 23 (2004) 2870-2875.
  • C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988) 785-789.
  • J. P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B 33 (1986) 8822-8824.
  • A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988) 3098-3100.
  • J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron- gas correlation energy, Phys. Rev. B 45 (1992) 13244-13249.
  • J. P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B 54 (1996) 16533-16539.
  • K. Burke, J. P. Perdew, Y. Wang, in: J. F. Dobson, G. Vignale, M. P. Das (Eds.), Plenum Press, 1998.
  • S. H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 58 (1980) 1200-1211.
  • W. P. Ozimiński, P. Garnuszek, E. Bednarek, Jan Cz. Dobrowolski, The platinum complexes with histamine: Pt(II)(Hist)Cl2, Pt(II)(Iodo-Hist)Cl2 and Pt(IV)(Hist)2Cl2, Inorg. Chim. Acta 360 (2007) 1902-1914.
  • Lin Zhang, Yu Zhang, Hanbing Tao, Xiaojuan Sun, Zijian Guo, Longgen Zhu, Theoretical calculation on far-infrared spectra of some palladium(II) and platinum(II) halides: effect of theoretical methods and basis sets, J. Mol. Struct.: THEOCHEM 617 (2002) 87-97.
  • D. Karakaş, K. Sayin, DFT and TD-DFT studies on copper(II) complexes with tripodal tetramine ligands, Indian J. Chem. 52A (2013) 480-485.
  • T. H. Jr. Dunning, P. J. Hay, in: H. F. Schaefer III (Ed.), Modern Theoretical Chemistry, Plenum, New York, 1976.
  • M. Dolg, H. Stoll, H. –J. Flad, H. Preuss, Ab initio pseudopotential study of Yb and YbO, J. Chem. Phys. 97 (1992) 1162-1173.
  • X. Y. Cao, M. Dolg, Segmented contraction scheme for small-core lanthanide pseudopotential basis sets, J. Mol. Struct.: THEOCHEM 581 (2002) 139-147.
  • J. B. Collins, P. V. R. Schleyer, J. S. Binkley, J. A. Pople, Self-consistent molecular orbital methods. XVII. Geometries and binding energies of second-row molecules. A comparison of basis sets, J. Chem. Phys. 64 (1976) 5142-5151.
  • P. J. Hay, W. R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys. 82 (1985) 270-283.
  • S. Kohara, N. Koura, Y. Idemoto, S. Takahashi, M. L. Sabooungi, L. A. Curtiss, The Structure of LiKCO3 by AB Initio Calculations and Raman Spectroscopy, J. Phys. Chem. Solids 59 (1998) 1477-1485.
  • W. J. Stevens, H. Basch, M. Krauss, Compact effective potentials and efficient shared-exponent basis sets for the first- and second row atoms, J. Chem. Phys. 81 (1984) 6026-6033.
  • W. J. Stevens, M. Krauss, H. Basch, P. G. Jasien, Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth- row atoms, Can. J. Chem. 70 (1992) 612-630.
  • T. R. Cundari, W. J. Stevens, Effective core potential methods for the lanthanides, J. Chem. Phys. 98 (1993) 5555-5565.
  • Amareshwar Kumar Rai, Xuee Xu, Zijing Lin, D.K. Rai, Conformational search for zwitterionic leucine and hydrated conformers of both the canonical and zwitterionic leucine using the DFT-CPCM model, Vibrational Spectroscopy 56 (2011) 74-81.
  • K. Sayın, D. Karakaş, Quantum chemical studies on the some inorganic corrosion inhibitors, Corros. Sci. 77 (2013) 37-45.
  • Xiao-Ying Hu, Xiao-Juan Liu, Ji-Kang Feng, Theoretical Investigation on the Absorption and Emission Properties of the Three Isomers of Bis(thiocyanato)(2,2′- bipyridyl)platinum(II), Chinese J. Chem. 25 (2007) 1370-1378.
  • K. Sayın, D. Karakaş, Determination of structural and electronic properties of [Ni(NQSC)2 complexes with DFT method, Journal of New Results in Science 2 (2013) 47-53.
  • K. Sayın, D. Karakaş, Quantum chemical studies on [Co(ntb)(pic)]+ complex ion, Journal of New Results in Science 2 (2013) 54-59.
There are 48 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Koray Sayin This is me

Duran Karakas This is me

Publication Date May 29, 2015
Published in Issue Year 2015 Volume: 4 Issue: 8

Cite

APA Sayin, K., & Karakas, D. (2015). Method/Basis Set Investigation and Spectral Studies for Oximato-Bridged trans-Platinum(II) Dimer Used as Anticancer Drug. Journal of New Results in Science, 4(8), 1-12.
AMA Sayin K, Karakas D. Method/Basis Set Investigation and Spectral Studies for Oximato-Bridged trans-Platinum(II) Dimer Used as Anticancer Drug. JNRS. August 2015;4(8):1-12.
Chicago Sayin, Koray, and Duran Karakas. “Method/Basis Set Investigation and Spectral Studies for Oximato-Bridged Trans-Platinum(II) Dimer Used As Anticancer Drug”. Journal of New Results in Science 4, no. 8 (August 2015): 1-12.
EndNote Sayin K, Karakas D (August 1, 2015) Method/Basis Set Investigation and Spectral Studies for Oximato-Bridged trans-Platinum(II) Dimer Used as Anticancer Drug. Journal of New Results in Science 4 8 1–12.
IEEE K. Sayin and D. Karakas, “Method/Basis Set Investigation and Spectral Studies for Oximato-Bridged trans-Platinum(II) Dimer Used as Anticancer Drug”, JNRS, vol. 4, no. 8, pp. 1–12, 2015.
ISNAD Sayin, Koray - Karakas, Duran. “Method/Basis Set Investigation and Spectral Studies for Oximato-Bridged Trans-Platinum(II) Dimer Used As Anticancer Drug”. Journal of New Results in Science 4/8 (August 2015), 1-12.
JAMA Sayin K, Karakas D. Method/Basis Set Investigation and Spectral Studies for Oximato-Bridged trans-Platinum(II) Dimer Used as Anticancer Drug. JNRS. 2015;4:1–12.
MLA Sayin, Koray and Duran Karakas. “Method/Basis Set Investigation and Spectral Studies for Oximato-Bridged Trans-Platinum(II) Dimer Used As Anticancer Drug”. Journal of New Results in Science, vol. 4, no. 8, 2015, pp. 1-12.
Vancouver Sayin K, Karakas D. Method/Basis Set Investigation and Spectral Studies for Oximato-Bridged trans-Platinum(II) Dimer Used as Anticancer Drug. JNRS. 2015;4(8):1-12.


TR Dizin 31688

EBSCO30456


Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).