BibTex RIS Cite

Stronger Forms of αGS-Continuous Functions in Topology

Year 2015, Volume: 4 Issue: 9, 28 - 36, 01.09.2015

Abstract

In this paper, a new stronger forms of continuity called
strongly αgs-continuous and perfectly αgs-continuous functions
are introduced. The aim of this paper is to characterize strongly
αgs-continuous and perfectly αgs-continuous functions via αgsclosed sets and relate these concepts to the classes of αgs-compact
and αgs-connected spaces.

References

  • S. G. Crossley and S. K. Hildebrand, Semi-Topological properties, Fund. Math., 74,(1972), 233-254.
  • N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer.Math.Monthly, 70,(1963), 36-41.
  • N. Levine, Strong Continuity in topological spaces, Amer. Math.Monthly, 67,(1960), 269.
  • G.B.Navavalgi, M.Rajamani and K. Viswanathan,On αgs-separation Axioms in topological spaces, Int J. Gen Topol.1,(2008), 43-53.
  • O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15,(1965), 961-970.
  • T. Noiri, On δ-continuous functions, J Korean Math Soc, 16,(1980), 161-166.
  • Md.Hanif PAGE,On Almost Contra αGS-Continuous Functions, International Journal of Scientific and Engineering Research,Vol.6, Issue 3, (March-2015), 1489-1494.
  • Rajamani M. and Viswnathan K.,On αgs-Closed sets in topological spaces,Acta Ciencia Indica, Vol.XXXM, No.1,(2004). 521-526.
  • Rajamani M. and Viswnathan K.,On αgs-continuous Maps in topological
  • spaces,Acta Ciencia Indica, Vol.XXXIM, No.1,(2005). 293-303.
Year 2015, Volume: 4 Issue: 9, 28 - 36, 01.09.2015

Abstract

References

  • S. G. Crossley and S. K. Hildebrand, Semi-Topological properties, Fund. Math., 74,(1972), 233-254.
  • N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer.Math.Monthly, 70,(1963), 36-41.
  • N. Levine, Strong Continuity in topological spaces, Amer. Math.Monthly, 67,(1960), 269.
  • G.B.Navavalgi, M.Rajamani and K. Viswanathan,On αgs-separation Axioms in topological spaces, Int J. Gen Topol.1,(2008), 43-53.
  • O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15,(1965), 961-970.
  • T. Noiri, On δ-continuous functions, J Korean Math Soc, 16,(1980), 161-166.
  • Md.Hanif PAGE,On Almost Contra αGS-Continuous Functions, International Journal of Scientific and Engineering Research,Vol.6, Issue 3, (March-2015), 1489-1494.
  • Rajamani M. and Viswnathan K.,On αgs-Closed sets in topological spaces,Acta Ciencia Indica, Vol.XXXM, No.1,(2004). 521-526.
  • Rajamani M. and Viswnathan K.,On αgs-continuous Maps in topological
  • spaces,Acta Ciencia Indica, Vol.XXXIM, No.1,(2005). 293-303.
There are 10 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Hanif Page This is me

Publication Date September 1, 2015
Published in Issue Year 2015 Volume: 4 Issue: 9

Cite

APA Page, H. (2015). Stronger Forms of αGS-Continuous Functions in Topology. Journal of New Results in Science, 4(9), 28-36.
AMA Page H. Stronger Forms of αGS-Continuous Functions in Topology. JNRS. September 2015;4(9):28-36.
Chicago Page, Hanif. “Stronger Forms of αGS-Continuous Functions in Topology”. Journal of New Results in Science 4, no. 9 (September 2015): 28-36.
EndNote Page H (September 1, 2015) Stronger Forms of αGS-Continuous Functions in Topology. Journal of New Results in Science 4 9 28–36.
IEEE H. Page, “Stronger Forms of αGS-Continuous Functions in Topology”, JNRS, vol. 4, no. 9, pp. 28–36, 2015.
ISNAD Page, Hanif. “Stronger Forms of αGS-Continuous Functions in Topology”. Journal of New Results in Science 4/9 (September 2015), 28-36.
JAMA Page H. Stronger Forms of αGS-Continuous Functions in Topology. JNRS. 2015;4:28–36.
MLA Page, Hanif. “Stronger Forms of αGS-Continuous Functions in Topology”. Journal of New Results in Science, vol. 4, no. 9, 2015, pp. 28-36.
Vancouver Page H. Stronger Forms of αGS-Continuous Functions in Topology. JNRS. 2015;4(9):28-36.


TR Dizin 31688

EBSCO30456


Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).