Research Article
BibTex RIS Cite

Age-related Changes in Adhesive Phenotype of Bone Marrow-derived Mesenchymal Stem Cells on Extracellular Matrix Proteins

Year 2017, Volume: 6 Issue: 1, 11 - 19, 02.03.2017

Abstract

Mesenchymal stem
cells (MSCs) are a promising cell source for cell-based therapies because of
their self-renewal and multi-lineage differentiation potential. Unlike
embryonic stem cells adult stem cells are subject of aging processes and the
concomitant decline in their function. Age-related changes in MSCs have to be
well understood in order to develop clinical techniques and therapeutics based
on these cells. In  this work we have
studied the effect of aging on adhesive behaviour of bone marrow-derived MSC
and MG- 63 osteoblastic cells onto three extracellular matrix proteins:
fibronectin (FN), vitronectin (VN) and collagen 
I (Coll I). The results revealed substantial differences in adhesive
behaviour of both cell types during 21 days in culture. Bone-marrow derived
MSCs decreased significantly their adhesive affinity to all studied proteins
after 7th day in culture with further incubation. In contrast, MG-63 cells,
demonstrated a stable cell adhesive phenotype with high affinity to FN and Coll
I and low affinity to vitronectin over the whole culture period. These data
suggest that adhesive behaviour of MSCs to matrix proteins is affected by aging
processes unlike MG-63 cells and the age-related changes have to be considered
when expanding adult stem cells for clinical applications.

References

  • Antia, M., Baneyx, G, Kubow, K., Vogel, V., 2008. Fibronectin in aging extracellular matrix fibrils is progressively unfolded by cells and elicits an enhanced rigidity response. Farady Discuss. 139, 229
  • Arnesen, S., Lawson, M., 2006. Age-related changes in focal adhesions lead to altered cell behavior in tendon fibroblasts. Mech Ageing Dev. 127, 726
  • Banfi, A., Muraglia, A., Dozin, B., Mastrogiacomo, M., Cancedda, R., Quarto, R., 2000. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Exp. Hematol. 28, 707
  • Baxter, M., Wynn, R., Jowitt, S., Wraith, J., Fairbairn, L., Bellantuono, I., 2004. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22, 675
  • Bianco, P., Riminucci, M., Gronthos S., Robey P., 2001. Bone Marrow Stromal Stem Cells: Nature, Biology, and Potential Applications. Stem Cells. 19, 180
  • Campisi, J., Kim, S., Lim, C., 2001. Cellular senescence, cancer and aging: the telomere connection. Experimental Gerontology. 36(10), 1619
  • Clover J. and Gowen M., 1994. Are MG-63 and HOS TE85 Human Osteosarcoma Cell Lines Representative Models of the Osteoblastic Phenotype? Bone. 15 (6), 585
  • D’Ippolito, G., Schiller, P., Ricordi, C., Roos, B., Howard, G., 1999. Age-related osteogenic potential of mesenchymal stromal cells from human bone marrow, J Bone Miner Res. 14, 1115
  • Docheva, D., Popov, C., Mutschler, W., Schieker, M., 2007. Human mesenchymal stem cells in contact with their environment: surface characteristics and the integrin system. J Cell Mol Med. 11(1), 21
  • Flickinger, K.S., Carter, W.G., Culp, L. A., 1992. Deficiency in integrin-mediated transmembrane signaling and microfilament stress fiber formation by aging dermal fibroblasts from normal and down's syndrome patients. Experimental Cell Research. 203(2), 466
  • Gao, Y., Kostrominova, T., Faulkner, J., Wineman, A., 2008. Age related changes in mechanical properties of the epimysium in skeletal muscles of rats. J Biomech. 41, 465
  • Gershlak, J., Resnikoff, J., Sullivan, K., Williams, C., Wang, R., Black 3rd., L., 2013. Mesenchymal stem cells ability to generate traction stress in response to substrate stiffness is modulated by the changing extracellular matrix composition of the heart during development, Biochem Biophys Res Commun. 439, 161
  • Ghasroldasht, M., Irfan-Maqsood, M., Matin, M., Bidkhori, H., Naderi-Meshkin, H., Moradi, A., Bahrami, A., 2014. Mesenchymal stem cell based therapy for osteo-diseases. Cell Biol Int. 9999, 1
  • Hu, Q., Moerman, E., Goldstein, S., 1996. Altered expression and regulation of the alpha5beta1 integrin- fibronectin receptor lead to reduced amounts of functional alpha5beta1 heterodimer on the plasma membrane of senescent human diploid fibroblasts, Exp. Cell. Res. 224, 251
  • Hwang, E., Yoon, G., Kang, H., 2009. A comparative analysis of the cell biology of senescence and aging, Cell. Mol. Life Sci. 66, 2503
  • Hwang, E., Ok, J., Song, S., 2016. Chemical and Physical Approaches to Extend the Replicative and Differentiation Potential of Stem Cells. Stem Cell Rev. 12(3), 315
  • Jones, E. and McGonagle, D., 2008. Human bone marrow mesenchymal stem cells in vivo. Rheumatology. 47, 126
  • Keremidarska, M., Hristova, K., Hikov, T., Radeva, E., Mitev, D., Tsvetanov, I., Presker, R., Drobne, D., Drašler, B., Novak, S., Kononenko, V., Eleršič, K., Pramatarova, L.,and Krasteva, N., 2015. Development of Polymer/Nanodiamond Composite Coatings to Control Cell Adhesion, Growth, and Functions. Advances in Planar Lipid Bilayers and Liposomes. 21, Elsevier Inc., 1-26
  • Kim, M., Kim, C., Choi, Y., Kim, M., Park, C., Suh, Y., 2012. Age related alterations in mesenchymal stem cells related to shift in differentiation from osteogenic to adipogenic potential: implications to age associated bone diseases and defects. Mech Ageing Dev. 133, 215
  • Kuo, T., Hung, S., Chuang, C., Chen, C., Shih, Y., Fang, S., Yang, V., Lee, O., 2008. Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology. 134, 2111 Larrick, J., Larrick J. and Mendelsohn, A., 2016. Reversal of Aged Muscle Stem Cell Dysfunction. Rejuvenation Research. 19 (5), 423
  • Li, L. and Xie, T., 2005. Stem cell niche: structure and functio. Annu Rev Cell Dev Biol. 21, 605
  • Lynch, K. and Pei, M. 2014. Age associated communication between cells and matrix: a potential impact on stem cell-based tissue regeneration strategies. Organogenesis. 10(3), 289
  • Mauney, J., Kaplan, D., Volloch, V., 2004. Matrix-mediated retention of osteogenic differentiation potential by human adult bone marrow stromal cells during ex vivo expansion. Biomaterials. 25, 3233
  • Meunier, P., Aaron, J., Edouard, C., Vignon, G., 1971. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin. Orthop. Relat. Res. 80, 147
  • Miura, Y., 2016. Human bone marrow mesenchymal stromal/stem cells: current clinical applications and potential for hematology. International Journal of Hematology. 103(2), 122
  • Moursi, A., Globus, R. and Damsky, C., 1997. Interactions between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro. Journal of Cell Science. 110, 2187
  • Murdoch, A., Grady, L., Ablett, M., Katopodi, T., Meadows R. and Hardingham, T., 2007. Chondrogenic Differentiation of Human Bone Marrow Stem Cells in Transwell Cultures: Generation of Scaffold- Free Cartilage. Stem Cells. 25, 2786
  • Nakamizo, A., Marini, F., Amano, T., Khan, A., Studeny, M., Gumin, J., Chen, J., Hentschel, S., Vecil, G., Dembinski, J., Andreeff, M., Lang, F.F., 2005. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res. 65, 3307
  • Peister, A., Mellad, J., Larson, B., Hall, B., Gibson, L. and Prockop, D., 2004. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation and differentiation potential. Blood. 103 (5), 1662
  • Roncoroni, L.P., Maerz, J.K., Angres, B., Steuer, H., Benz, K., Abruzzese, T., Hart, M., Rolauffs, B., Klein, G., Stoll, D. and Aicher, W., 2013. Adhesion to Extracellular Matrix Proteins can Differentiate between Human Bone Marrow Derived Mesenchymal Stem Cells and Fibroblasts. J Tissue Sci Eng S. 11, 008
  • Sell, D., and Monnier, V., 1989. Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J Biol Chem. 264(36), 21597
  • Sethe, S., Scutt, A., Stolzing, A., 2006. Aging of mesenchymal stem cells. Ageing Res Rev. 5(1), 91 Somaiah, C., Kumar, A., Mawrie, D., Sharma, A., Patil, S.D., Bhattacharyya, J., Swaminathan, R., Jaganathan, B., 2015. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells. PLoS ONE 10(12) e0145068.
  • Stein, G., Lian, J. and Owen, T., 1990. Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. FASEB J. 4, 3111
  • Tottey, S., Johnson, S., Crapo, P., Reing, J., Zhang, L., Jiang, H., Medberry, C., Reines, B., Badylak, S., 2011. The effect of source animal age upon extracellular matrix scaffold properties. Biomaterials. 32, 128
  • Tuan, R., Boland, G. and Tuli, R., 2003. Adult mesenchymal stem cells and cell-based tissue engineering, Arthriis Res Ther. 5, 32
  • Verfaillie, C., 2002. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 418, 41 Wagers, A., 2012. The stem cell niche in regenerative medicine. Cell Stem Cell. 10, 362
  • Wagner, W., Horn, P., Castoldi, M., Diehlmann, A., Bork, S., Saffrich, R., Benes, V., Blake, J., Pfister, S., Eckstein, V., Ho, A., 2008. Replicative Senescence of Mesenchymal Stem Cells: A Continuous and Organized Process. PLoS ONE. 3(5), e2213
  • Winnard, R., Gerstenfeld, L., Toma, C., Franceschi, R., 1995. Fibroncetin gene expression, synthesis and accumulation during in vitro differentiation of chicken osteoblasts. J. Bone Miner. Res. 10, 1969.
Year 2017, Volume: 6 Issue: 1, 11 - 19, 02.03.2017

Abstract

References

  • Antia, M., Baneyx, G, Kubow, K., Vogel, V., 2008. Fibronectin in aging extracellular matrix fibrils is progressively unfolded by cells and elicits an enhanced rigidity response. Farady Discuss. 139, 229
  • Arnesen, S., Lawson, M., 2006. Age-related changes in focal adhesions lead to altered cell behavior in tendon fibroblasts. Mech Ageing Dev. 127, 726
  • Banfi, A., Muraglia, A., Dozin, B., Mastrogiacomo, M., Cancedda, R., Quarto, R., 2000. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Exp. Hematol. 28, 707
  • Baxter, M., Wynn, R., Jowitt, S., Wraith, J., Fairbairn, L., Bellantuono, I., 2004. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22, 675
  • Bianco, P., Riminucci, M., Gronthos S., Robey P., 2001. Bone Marrow Stromal Stem Cells: Nature, Biology, and Potential Applications. Stem Cells. 19, 180
  • Campisi, J., Kim, S., Lim, C., 2001. Cellular senescence, cancer and aging: the telomere connection. Experimental Gerontology. 36(10), 1619
  • Clover J. and Gowen M., 1994. Are MG-63 and HOS TE85 Human Osteosarcoma Cell Lines Representative Models of the Osteoblastic Phenotype? Bone. 15 (6), 585
  • D’Ippolito, G., Schiller, P., Ricordi, C., Roos, B., Howard, G., 1999. Age-related osteogenic potential of mesenchymal stromal cells from human bone marrow, J Bone Miner Res. 14, 1115
  • Docheva, D., Popov, C., Mutschler, W., Schieker, M., 2007. Human mesenchymal stem cells in contact with their environment: surface characteristics and the integrin system. J Cell Mol Med. 11(1), 21
  • Flickinger, K.S., Carter, W.G., Culp, L. A., 1992. Deficiency in integrin-mediated transmembrane signaling and microfilament stress fiber formation by aging dermal fibroblasts from normal and down's syndrome patients. Experimental Cell Research. 203(2), 466
  • Gao, Y., Kostrominova, T., Faulkner, J., Wineman, A., 2008. Age related changes in mechanical properties of the epimysium in skeletal muscles of rats. J Biomech. 41, 465
  • Gershlak, J., Resnikoff, J., Sullivan, K., Williams, C., Wang, R., Black 3rd., L., 2013. Mesenchymal stem cells ability to generate traction stress in response to substrate stiffness is modulated by the changing extracellular matrix composition of the heart during development, Biochem Biophys Res Commun. 439, 161
  • Ghasroldasht, M., Irfan-Maqsood, M., Matin, M., Bidkhori, H., Naderi-Meshkin, H., Moradi, A., Bahrami, A., 2014. Mesenchymal stem cell based therapy for osteo-diseases. Cell Biol Int. 9999, 1
  • Hu, Q., Moerman, E., Goldstein, S., 1996. Altered expression and regulation of the alpha5beta1 integrin- fibronectin receptor lead to reduced amounts of functional alpha5beta1 heterodimer on the plasma membrane of senescent human diploid fibroblasts, Exp. Cell. Res. 224, 251
  • Hwang, E., Yoon, G., Kang, H., 2009. A comparative analysis of the cell biology of senescence and aging, Cell. Mol. Life Sci. 66, 2503
  • Hwang, E., Ok, J., Song, S., 2016. Chemical and Physical Approaches to Extend the Replicative and Differentiation Potential of Stem Cells. Stem Cell Rev. 12(3), 315
  • Jones, E. and McGonagle, D., 2008. Human bone marrow mesenchymal stem cells in vivo. Rheumatology. 47, 126
  • Keremidarska, M., Hristova, K., Hikov, T., Radeva, E., Mitev, D., Tsvetanov, I., Presker, R., Drobne, D., Drašler, B., Novak, S., Kononenko, V., Eleršič, K., Pramatarova, L.,and Krasteva, N., 2015. Development of Polymer/Nanodiamond Composite Coatings to Control Cell Adhesion, Growth, and Functions. Advances in Planar Lipid Bilayers and Liposomes. 21, Elsevier Inc., 1-26
  • Kim, M., Kim, C., Choi, Y., Kim, M., Park, C., Suh, Y., 2012. Age related alterations in mesenchymal stem cells related to shift in differentiation from osteogenic to adipogenic potential: implications to age associated bone diseases and defects. Mech Ageing Dev. 133, 215
  • Kuo, T., Hung, S., Chuang, C., Chen, C., Shih, Y., Fang, S., Yang, V., Lee, O., 2008. Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology. 134, 2111 Larrick, J., Larrick J. and Mendelsohn, A., 2016. Reversal of Aged Muscle Stem Cell Dysfunction. Rejuvenation Research. 19 (5), 423
  • Li, L. and Xie, T., 2005. Stem cell niche: structure and functio. Annu Rev Cell Dev Biol. 21, 605
  • Lynch, K. and Pei, M. 2014. Age associated communication between cells and matrix: a potential impact on stem cell-based tissue regeneration strategies. Organogenesis. 10(3), 289
  • Mauney, J., Kaplan, D., Volloch, V., 2004. Matrix-mediated retention of osteogenic differentiation potential by human adult bone marrow stromal cells during ex vivo expansion. Biomaterials. 25, 3233
  • Meunier, P., Aaron, J., Edouard, C., Vignon, G., 1971. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin. Orthop. Relat. Res. 80, 147
  • Miura, Y., 2016. Human bone marrow mesenchymal stromal/stem cells: current clinical applications and potential for hematology. International Journal of Hematology. 103(2), 122
  • Moursi, A., Globus, R. and Damsky, C., 1997. Interactions between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro. Journal of Cell Science. 110, 2187
  • Murdoch, A., Grady, L., Ablett, M., Katopodi, T., Meadows R. and Hardingham, T., 2007. Chondrogenic Differentiation of Human Bone Marrow Stem Cells in Transwell Cultures: Generation of Scaffold- Free Cartilage. Stem Cells. 25, 2786
  • Nakamizo, A., Marini, F., Amano, T., Khan, A., Studeny, M., Gumin, J., Chen, J., Hentschel, S., Vecil, G., Dembinski, J., Andreeff, M., Lang, F.F., 2005. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res. 65, 3307
  • Peister, A., Mellad, J., Larson, B., Hall, B., Gibson, L. and Prockop, D., 2004. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation and differentiation potential. Blood. 103 (5), 1662
  • Roncoroni, L.P., Maerz, J.K., Angres, B., Steuer, H., Benz, K., Abruzzese, T., Hart, M., Rolauffs, B., Klein, G., Stoll, D. and Aicher, W., 2013. Adhesion to Extracellular Matrix Proteins can Differentiate between Human Bone Marrow Derived Mesenchymal Stem Cells and Fibroblasts. J Tissue Sci Eng S. 11, 008
  • Sell, D., and Monnier, V., 1989. Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J Biol Chem. 264(36), 21597
  • Sethe, S., Scutt, A., Stolzing, A., 2006. Aging of mesenchymal stem cells. Ageing Res Rev. 5(1), 91 Somaiah, C., Kumar, A., Mawrie, D., Sharma, A., Patil, S.D., Bhattacharyya, J., Swaminathan, R., Jaganathan, B., 2015. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells. PLoS ONE 10(12) e0145068.
  • Stein, G., Lian, J. and Owen, T., 1990. Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. FASEB J. 4, 3111
  • Tottey, S., Johnson, S., Crapo, P., Reing, J., Zhang, L., Jiang, H., Medberry, C., Reines, B., Badylak, S., 2011. The effect of source animal age upon extracellular matrix scaffold properties. Biomaterials. 32, 128
  • Tuan, R., Boland, G. and Tuli, R., 2003. Adult mesenchymal stem cells and cell-based tissue engineering, Arthriis Res Ther. 5, 32
  • Verfaillie, C., 2002. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 418, 41 Wagers, A., 2012. The stem cell niche in regenerative medicine. Cell Stem Cell. 10, 362
  • Wagner, W., Horn, P., Castoldi, M., Diehlmann, A., Bork, S., Saffrich, R., Benes, V., Blake, J., Pfister, S., Eckstein, V., Ho, A., 2008. Replicative Senescence of Mesenchymal Stem Cells: A Continuous and Organized Process. PLoS ONE. 3(5), e2213
  • Winnard, R., Gerstenfeld, L., Toma, C., Franceschi, R., 1995. Fibroncetin gene expression, synthesis and accumulation during in vitro differentiation of chicken osteoblasts. J. Bone Miner. Res. 10, 1969.
There are 38 citations in total.

Details

Journal Section Articles
Authors

Kamelia Hrıstova-panusheva This is me

Milena Keremıdarska-markova This is me

George Altankov This is me

Natalia Krasteva This is me

Publication Date March 2, 2017
Published in Issue Year 2017 Volume: 6 Issue: 1

Cite

APA Hrıstova-panusheva, K., Keremıdarska-markova, M., Altankov, G., Krasteva, N. (2017). Age-related Changes in Adhesive Phenotype of Bone Marrow-derived Mesenchymal Stem Cells on Extracellular Matrix Proteins. Journal of New Results in Science, 6(1), 11-19.
AMA Hrıstova-panusheva K, Keremıdarska-markova M, Altankov G, Krasteva N. Age-related Changes in Adhesive Phenotype of Bone Marrow-derived Mesenchymal Stem Cells on Extracellular Matrix Proteins. JNRS. April 2017;6(1):11-19.
Chicago Hrıstova-panusheva, Kamelia, Milena Keremıdarska-markova, George Altankov, and Natalia Krasteva. “Age-Related Changes in Adhesive Phenotype of Bone Marrow-Derived Mesenchymal Stem Cells on Extracellular Matrix Proteins”. Journal of New Results in Science 6, no. 1 (April 2017): 11-19.
EndNote Hrıstova-panusheva K, Keremıdarska-markova M, Altankov G, Krasteva N (April 1, 2017) Age-related Changes in Adhesive Phenotype of Bone Marrow-derived Mesenchymal Stem Cells on Extracellular Matrix Proteins. Journal of New Results in Science 6 1 11–19.
IEEE K. Hrıstova-panusheva, M. Keremıdarska-markova, G. Altankov, and N. Krasteva, “Age-related Changes in Adhesive Phenotype of Bone Marrow-derived Mesenchymal Stem Cells on Extracellular Matrix Proteins”, JNRS, vol. 6, no. 1, pp. 11–19, 2017.
ISNAD Hrıstova-panusheva, Kamelia et al. “Age-Related Changes in Adhesive Phenotype of Bone Marrow-Derived Mesenchymal Stem Cells on Extracellular Matrix Proteins”. Journal of New Results in Science 6/1 (April 2017), 11-19.
JAMA Hrıstova-panusheva K, Keremıdarska-markova M, Altankov G, Krasteva N. Age-related Changes in Adhesive Phenotype of Bone Marrow-derived Mesenchymal Stem Cells on Extracellular Matrix Proteins. JNRS. 2017;6:11–19.
MLA Hrıstova-panusheva, Kamelia et al. “Age-Related Changes in Adhesive Phenotype of Bone Marrow-Derived Mesenchymal Stem Cells on Extracellular Matrix Proteins”. Journal of New Results in Science, vol. 6, no. 1, 2017, pp. 11-19.
Vancouver Hrıstova-panusheva K, Keremıdarska-markova M, Altankov G, Krasteva N. Age-related Changes in Adhesive Phenotype of Bone Marrow-derived Mesenchymal Stem Cells on Extracellular Matrix Proteins. JNRS. 2017;6(1):11-9.


TR Dizin 31688

EBSCO30456


Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).