Research Article
BibTex RIS Cite
Year 2021, Volume: 10 Issue: 1, 54 - 64, 30.04.2021

Abstract

References

  • G. Lenderink, E. V. Meijgaard, Linking İncreases in Hourly Precipitation Extremes to Atmospheric Temperature and Moisture Changes, Environmental Research Letters, 5(2), (2010) Article ID: 025208, 1–9.
  • M. Martinkova, M. Hanel, Evaluation of Relations Between Extreme Precipitation and Temperature in Observational Time Series from the Czech Republic, Advances in Meteorology, 2016 (2016) Article ID: 2975380, 1–9.
  • T. G. Romilly, M. Gebremichael, Evaluation of Satellite Rainfall Estimates over Ethiopian River Basins. Hydrology and Earth System Sciences, 15, (2011) 1505–1514.
  • F. S. Chapin III, J. McFarland, A.D. McGuire, E.S. Euskirchen, R. W. Ruess, K. Kielland, The Changing Global Carbon Cycle: Linking Plant–Soil Carbon Dynamics to Global Consequences. Journal of Ecology, 97, (2009) 840–850.
  • P. S. Bindraban, Coauthors, Assessing the Impact of Soil Degradation on Food Production, Current Opinion in Environmental Sustainability, 4, (2012) 478–488.
  • P. J. Mayhew, G. B. Jenkins, T. B. Benton, A Long-Term Association Between Global Temperature and Biodiversity, Origination and Extinction in The Fossil Record. Proceedings of the Royal Society B, 275, (2008) 47–53.
  • J. Penuelas, M. Fernández-Martínez, H. Vallicrosa, J. Maspons, P. Zuccarini, J. Carnicer, T. G. M. Sanders, I. Krüger, M. Obersteiner, I. A. Janssens, P. Ciais, J. Sardans, Increasing Atmospheric CO2 Concentrations Correlate with Declining Nutritional Status of European Forests, Communications Biology, 3, (2020) Article Number: 125, 1–11.
  • H. Steltzer, E. Post, Seasons and Life Cycles. Science, 324, (2009) 886–887.
  • L. Ye, H. Z. Tang, J. A. Verdoodt, E. Van Ranst, Spatial Patterns and Effects of Soil Organic Carbon on Grain Productivity Assessment in China. Soil Use and Management, 24, (2008) 80–91.
  • J. Hansen, M. Sato, R. Ruedy, K. Lo, D. W. L, M. Medina-Elizade, Global Temperature Change, Proceeding of the National Academy of Sciences of the United States of America, 103(39), (2006) 14288–14293
  • S. Rahmstorf, Response to Comments on a Semiempirical Approach to Projecting Future Sea-Level Rise, Science, 317, (2007), 1866.
  • S. Mehan, T. Guo, M. W. Gitau, D. C. Flanagan, Comparative study of different stochastic weather generators for long-term climate data simulation. Climate, 5(2), (2017) 1–40.
  • C. W. Richardson, Stochastic Simulation of Daily Precipitation, Temperature, and Solar Radiation, Water Resources Research, 17, (1981) 182–90.
  • C. W. Richardson, D. A. Wright, WGEN: A Model for Generating Daily Weather Variables, U.S. Depart. Agr, Agricultural Research Service. Publ. ARS-8, (1984) 1–86.
  • C. O, Stockle, R, Nelson, R, Climgen, A Weather Generator Program. Biological Systems Engineering Department, Washington State University, Pullman, Washington, USA. A. D, 1999.
  • Nicks, G. A. Gander, A Weather Generator for Climate Inputs to Water Resource and Other Models, Computers in Agriculture. Michigan 49085, USA. 1994.
  • A. D. Nicks, L. J. Lane, G. A. Gander, Weather generator, Ch. 2. In: Flanagan D. C, and Nearing M A. USDA−Water Erosion Prediction Project: Hillslope Profile and Watershed Model Documentation, NSERL Report No. 10. West Lafayette, Ind.: USDA−ARS−NSERL, 1995.
  • M. A. Semenov, E. M. Barrow, W. G. LARS, A Stochastic Weather Generator for Use in Climate Impact Studies, User Manual, 2002.
  • D. S. Wilks, R. L. Wilby, The Weather Generation Game: A Review of Stochastic Weather Models, Progress in Physical Geography: Earth and Environment, 23, (1999) 329–357.
  • X. C. Zhang, Spatial downscaling of global climate model output for site-specific assessment of crop production and soil erosion. Agricultural and Forest Meteorology, 135(1–4), (2005) 215–229.
  • D. Chen, M. Hu, Y. Guo, R. A. Dahlgren, Changes in River Water Temperature Between 1980 and 2012 in Yongan Watershed, Eastern China: Magnitude, Drivers and Models, Journal of Hydrology 533, (2016) 191–199.
  • C. L. Hanson, K. A. Cumming, D. A. Woolhiser, C. W. Richardson, Microcomputer Program for Daily Weather Simulations in The Contiguous United States. USDA−ARS Publ. ARS−114, Washington D.C., 1994.
  • A. D. Nicks, J.F. Harp, Stochastic Generation of Temperature and Solar Radiation Data. Journal of Hydrology, 48(1-2), (1980) 1–7.
  • N. W. Arnell, N.S. Reynard, The Effects of Climate Change Due to Global Warming on River Flows in Great Britain. Journal of Hydrology, 183(3–4), (1996) 397–424.
  • P. Frich, L. V. Alexander, P. M. Della-Marta, B. Gleason, M. Haylock, A.K. Tank, T. Peterson, Observed Coherent Changes in Climatic Extremes During the Second Half of The Twentieth Century. Climate Research, 19(3), (2002) 193–212.
  • U. C. Udo-Inyang, I. D. Edem, A Changes in Precipitation Analysis of Precipitation Trends in Akwa Ibom State, Nigeria. Journal of Environmental and Earth Science, 2(8), (2012) 60–71.
  • M. A. Rahman, L. Yunsheng, N. Sultana, Analysis and Prediction of Precipitation Trends over Bangladesh Using Mann–Kendall, Spearman’s Rho Tests and ARIMA Model. Meteorology and Atmospheric Physics, 129(4), (2017) 409–424.
  • V. Kumar, S. K. Jain, Y. Singh, Analysis of Long-Term Precipitation Trends in India. Hydrological Sciences Journal–Journal des Sciences Hydrologiques, 55(4), (2010) 484–496.
  • M. G. Kendall, Rank correlation methods. London, 1975.
  • R. O. Gilbert, Statistical Methods for Environmental Pollution Monitoring, 1987.
  • N. Karmeshu, Trend detection in annual temperature & precipitation using the Mann Kendall Test – a case study to assess climate change on select states in the northeastern United States. Master’s thesis, University of Pennsylvania. Philadelphia, 2012.
  • J. Wibig, B. Glowicki, Trends of Minimum and Maximum Temperature in Poland, Climate Research, 20(2), (2002) 123–133.
  • M. B. Gavrilov, L. Lazić, A. Pešić, M. Milutinović, D. Marković, A. Stanković, M.M. Gavrilov, Influence of Hail Suppression on The Hail Trend in Serbia. Physical Geography, 31(5), (2010) 441–454.
  • M. B. Gavrilov, S.B. Marković, M. Zorn, B. Komac, T. Lukić, M. Milošević, S. Janićević, Is Hail Suppression Useful in Serbia? – General Review and New Results. Acta Geographica Slovenica 53(1), (2013) 165–179.
  • I. Hrnjak, T. Lukić, M. B. Gavrilov, S. B. Marković, M. Unkašević, I. Tošić, Aridity in Vojvodina, Serbia. Theoretical and Applied Climatology, 115, (2014) 1–2.
  • H. Tabari, S. Marofi, A. Aeini, P. H. Talaee, K. Mohammadi, Trend Analysis of Reference Evapotranspiration in The Western Half of Iran. Agricultural and Forest Meteorology, 151(2), (2011) 128–136.
  • K. Drapela, I. Drapelova, Application of Mann-Kendall Test and The Sen’s Slope Estimates for Trend Detection in Deposition Data from Bílý Kříž (Beskydy Mts., the Czech Republic) 1997-2010, Beskydy, 4(2) (2011) 133–146.
  • S. Yue, C. Wang, The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series. Water Resources Management, 18(3), (2004) 201-218.
  • T. Sinha, K. A. Cherkauer, Time Series Analysis of Soil Freeze and Thaw Processes in Indiana. Journal of Hydrometeorology, 9(5), (2008) 936–950.
  • M. B. Gavrilov, I. Tošić, S. B. Marković, M. Unkašević, P. Petrović, The Analysis of Annual and Seasonal Temperature Trends using The Mann-Kendall Test in Vojvodina, Serbia. IDŐJÁRÁS (accepted). Budapest. 2015.
  • N. Stern, The Economics of Climate Change, The Stern Review, Cambridge. 2007.
  • D. Wallach, D. Makowski, J. Jones, Working with Dynamic Crop Models—Evaluation, Analysis, Parameterization, And Applications, (Amsterdam: Elsevier). (2006) 462.
  • D. B. Lobell, Prioritizing Climate Change Adaptation Needs for Food Security in 2030, Science, 319, (2008) 607–10.
  • B. H. Özkaynar, S. Demir, Y. Akdoğan, Statistical Evaluation of Maximum and Minimum Temperatures through CLIGEN Climate Model, Journal of Agricultural Faculty of Gaziosmanpasa University, 37(3), (2020) 190–201.
  • M. Türkeş, Spatial and temporal analysis of annual rainfall variations in Turkey, International Journal of Climatology, 16, (1996) 1057–1076.
  • M. Türkeş, Global Warming is Breaking Records, TÜBİTAK Bilim ve Teknik Dergisi, 370, (1998) 20–21.

Evaluation of Temperature Parameters in Kayseri Province with CLIGEN

Year 2021, Volume: 10 Issue: 1, 54 - 64, 30.04.2021

Abstract

One of the critical consequences of climate change, expecting in the future but beginning to appear nowadays, is the increase in average earth temperatures. The Mediterranean basin we live in is one of the regions that this climate change will most affect. Therefore, simulation studies using climate models gain importance. In this study, Kayseri station's 39-year temperature changes between the 1980-2018 years were simulated using the CLIGEN climate model. The relationship between observed and predicted temperatures was determined utilizing the Mann-Kendall statistical method. CLIGEN estimated the annual average, minimum and maximum average temperatures above the detected value. These values have shown that the study area may encounter a drought problem and be affected by climate change soon.

References

  • G. Lenderink, E. V. Meijgaard, Linking İncreases in Hourly Precipitation Extremes to Atmospheric Temperature and Moisture Changes, Environmental Research Letters, 5(2), (2010) Article ID: 025208, 1–9.
  • M. Martinkova, M. Hanel, Evaluation of Relations Between Extreme Precipitation and Temperature in Observational Time Series from the Czech Republic, Advances in Meteorology, 2016 (2016) Article ID: 2975380, 1–9.
  • T. G. Romilly, M. Gebremichael, Evaluation of Satellite Rainfall Estimates over Ethiopian River Basins. Hydrology and Earth System Sciences, 15, (2011) 1505–1514.
  • F. S. Chapin III, J. McFarland, A.D. McGuire, E.S. Euskirchen, R. W. Ruess, K. Kielland, The Changing Global Carbon Cycle: Linking Plant–Soil Carbon Dynamics to Global Consequences. Journal of Ecology, 97, (2009) 840–850.
  • P. S. Bindraban, Coauthors, Assessing the Impact of Soil Degradation on Food Production, Current Opinion in Environmental Sustainability, 4, (2012) 478–488.
  • P. J. Mayhew, G. B. Jenkins, T. B. Benton, A Long-Term Association Between Global Temperature and Biodiversity, Origination and Extinction in The Fossil Record. Proceedings of the Royal Society B, 275, (2008) 47–53.
  • J. Penuelas, M. Fernández-Martínez, H. Vallicrosa, J. Maspons, P. Zuccarini, J. Carnicer, T. G. M. Sanders, I. Krüger, M. Obersteiner, I. A. Janssens, P. Ciais, J. Sardans, Increasing Atmospheric CO2 Concentrations Correlate with Declining Nutritional Status of European Forests, Communications Biology, 3, (2020) Article Number: 125, 1–11.
  • H. Steltzer, E. Post, Seasons and Life Cycles. Science, 324, (2009) 886–887.
  • L. Ye, H. Z. Tang, J. A. Verdoodt, E. Van Ranst, Spatial Patterns and Effects of Soil Organic Carbon on Grain Productivity Assessment in China. Soil Use and Management, 24, (2008) 80–91.
  • J. Hansen, M. Sato, R. Ruedy, K. Lo, D. W. L, M. Medina-Elizade, Global Temperature Change, Proceeding of the National Academy of Sciences of the United States of America, 103(39), (2006) 14288–14293
  • S. Rahmstorf, Response to Comments on a Semiempirical Approach to Projecting Future Sea-Level Rise, Science, 317, (2007), 1866.
  • S. Mehan, T. Guo, M. W. Gitau, D. C. Flanagan, Comparative study of different stochastic weather generators for long-term climate data simulation. Climate, 5(2), (2017) 1–40.
  • C. W. Richardson, Stochastic Simulation of Daily Precipitation, Temperature, and Solar Radiation, Water Resources Research, 17, (1981) 182–90.
  • C. W. Richardson, D. A. Wright, WGEN: A Model for Generating Daily Weather Variables, U.S. Depart. Agr, Agricultural Research Service. Publ. ARS-8, (1984) 1–86.
  • C. O, Stockle, R, Nelson, R, Climgen, A Weather Generator Program. Biological Systems Engineering Department, Washington State University, Pullman, Washington, USA. A. D, 1999.
  • Nicks, G. A. Gander, A Weather Generator for Climate Inputs to Water Resource and Other Models, Computers in Agriculture. Michigan 49085, USA. 1994.
  • A. D. Nicks, L. J. Lane, G. A. Gander, Weather generator, Ch. 2. In: Flanagan D. C, and Nearing M A. USDA−Water Erosion Prediction Project: Hillslope Profile and Watershed Model Documentation, NSERL Report No. 10. West Lafayette, Ind.: USDA−ARS−NSERL, 1995.
  • M. A. Semenov, E. M. Barrow, W. G. LARS, A Stochastic Weather Generator for Use in Climate Impact Studies, User Manual, 2002.
  • D. S. Wilks, R. L. Wilby, The Weather Generation Game: A Review of Stochastic Weather Models, Progress in Physical Geography: Earth and Environment, 23, (1999) 329–357.
  • X. C. Zhang, Spatial downscaling of global climate model output for site-specific assessment of crop production and soil erosion. Agricultural and Forest Meteorology, 135(1–4), (2005) 215–229.
  • D. Chen, M. Hu, Y. Guo, R. A. Dahlgren, Changes in River Water Temperature Between 1980 and 2012 in Yongan Watershed, Eastern China: Magnitude, Drivers and Models, Journal of Hydrology 533, (2016) 191–199.
  • C. L. Hanson, K. A. Cumming, D. A. Woolhiser, C. W. Richardson, Microcomputer Program for Daily Weather Simulations in The Contiguous United States. USDA−ARS Publ. ARS−114, Washington D.C., 1994.
  • A. D. Nicks, J.F. Harp, Stochastic Generation of Temperature and Solar Radiation Data. Journal of Hydrology, 48(1-2), (1980) 1–7.
  • N. W. Arnell, N.S. Reynard, The Effects of Climate Change Due to Global Warming on River Flows in Great Britain. Journal of Hydrology, 183(3–4), (1996) 397–424.
  • P. Frich, L. V. Alexander, P. M. Della-Marta, B. Gleason, M. Haylock, A.K. Tank, T. Peterson, Observed Coherent Changes in Climatic Extremes During the Second Half of The Twentieth Century. Climate Research, 19(3), (2002) 193–212.
  • U. C. Udo-Inyang, I. D. Edem, A Changes in Precipitation Analysis of Precipitation Trends in Akwa Ibom State, Nigeria. Journal of Environmental and Earth Science, 2(8), (2012) 60–71.
  • M. A. Rahman, L. Yunsheng, N. Sultana, Analysis and Prediction of Precipitation Trends over Bangladesh Using Mann–Kendall, Spearman’s Rho Tests and ARIMA Model. Meteorology and Atmospheric Physics, 129(4), (2017) 409–424.
  • V. Kumar, S. K. Jain, Y. Singh, Analysis of Long-Term Precipitation Trends in India. Hydrological Sciences Journal–Journal des Sciences Hydrologiques, 55(4), (2010) 484–496.
  • M. G. Kendall, Rank correlation methods. London, 1975.
  • R. O. Gilbert, Statistical Methods for Environmental Pollution Monitoring, 1987.
  • N. Karmeshu, Trend detection in annual temperature & precipitation using the Mann Kendall Test – a case study to assess climate change on select states in the northeastern United States. Master’s thesis, University of Pennsylvania. Philadelphia, 2012.
  • J. Wibig, B. Glowicki, Trends of Minimum and Maximum Temperature in Poland, Climate Research, 20(2), (2002) 123–133.
  • M. B. Gavrilov, L. Lazić, A. Pešić, M. Milutinović, D. Marković, A. Stanković, M.M. Gavrilov, Influence of Hail Suppression on The Hail Trend in Serbia. Physical Geography, 31(5), (2010) 441–454.
  • M. B. Gavrilov, S.B. Marković, M. Zorn, B. Komac, T. Lukić, M. Milošević, S. Janićević, Is Hail Suppression Useful in Serbia? – General Review and New Results. Acta Geographica Slovenica 53(1), (2013) 165–179.
  • I. Hrnjak, T. Lukić, M. B. Gavrilov, S. B. Marković, M. Unkašević, I. Tošić, Aridity in Vojvodina, Serbia. Theoretical and Applied Climatology, 115, (2014) 1–2.
  • H. Tabari, S. Marofi, A. Aeini, P. H. Talaee, K. Mohammadi, Trend Analysis of Reference Evapotranspiration in The Western Half of Iran. Agricultural and Forest Meteorology, 151(2), (2011) 128–136.
  • K. Drapela, I. Drapelova, Application of Mann-Kendall Test and The Sen’s Slope Estimates for Trend Detection in Deposition Data from Bílý Kříž (Beskydy Mts., the Czech Republic) 1997-2010, Beskydy, 4(2) (2011) 133–146.
  • S. Yue, C. Wang, The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series. Water Resources Management, 18(3), (2004) 201-218.
  • T. Sinha, K. A. Cherkauer, Time Series Analysis of Soil Freeze and Thaw Processes in Indiana. Journal of Hydrometeorology, 9(5), (2008) 936–950.
  • M. B. Gavrilov, I. Tošić, S. B. Marković, M. Unkašević, P. Petrović, The Analysis of Annual and Seasonal Temperature Trends using The Mann-Kendall Test in Vojvodina, Serbia. IDŐJÁRÁS (accepted). Budapest. 2015.
  • N. Stern, The Economics of Climate Change, The Stern Review, Cambridge. 2007.
  • D. Wallach, D. Makowski, J. Jones, Working with Dynamic Crop Models—Evaluation, Analysis, Parameterization, And Applications, (Amsterdam: Elsevier). (2006) 462.
  • D. B. Lobell, Prioritizing Climate Change Adaptation Needs for Food Security in 2030, Science, 319, (2008) 607–10.
  • B. H. Özkaynar, S. Demir, Y. Akdoğan, Statistical Evaluation of Maximum and Minimum Temperatures through CLIGEN Climate Model, Journal of Agricultural Faculty of Gaziosmanpasa University, 37(3), (2020) 190–201.
  • M. Türkeş, Spatial and temporal analysis of annual rainfall variations in Turkey, International Journal of Climatology, 16, (1996) 1057–1076.
  • M. Türkeş, Global Warming is Breaking Records, TÜBİTAK Bilim ve Teknik Dergisi, 370, (1998) 20–21.
There are 46 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Saniye Demir 0000-0003-3908-7070

Yunus Akdoğan 0000-0003-3520-7493

Furkan Yılmaz This is me 0000-0003-1448-8185

Müberra Erdoğan 0000-0003-3794-4032

Selma Kökçü This is me 0000-0003-1402-6394

Publication Date April 30, 2021
Published in Issue Year 2021 Volume: 10 Issue: 1

Cite

APA Demir, S., Akdoğan, Y., Yılmaz, F., Erdoğan, M., et al. (2021). Evaluation of Temperature Parameters in Kayseri Province with CLIGEN. Journal of New Results in Science, 10(1), 54-64.
AMA Demir S, Akdoğan Y, Yılmaz F, Erdoğan M, Kökçü S. Evaluation of Temperature Parameters in Kayseri Province with CLIGEN. JNRS. April 2021;10(1):54-64.
Chicago Demir, Saniye, Yunus Akdoğan, Furkan Yılmaz, Müberra Erdoğan, and Selma Kökçü. “Evaluation of Temperature Parameters in Kayseri Province With CLIGEN”. Journal of New Results in Science 10, no. 1 (April 2021): 54-64.
EndNote Demir S, Akdoğan Y, Yılmaz F, Erdoğan M, Kökçü S (April 1, 2021) Evaluation of Temperature Parameters in Kayseri Province with CLIGEN. Journal of New Results in Science 10 1 54–64.
IEEE S. Demir, Y. Akdoğan, F. Yılmaz, M. Erdoğan, and S. Kökçü, “Evaluation of Temperature Parameters in Kayseri Province with CLIGEN”, JNRS, vol. 10, no. 1, pp. 54–64, 2021.
ISNAD Demir, Saniye et al. “Evaluation of Temperature Parameters in Kayseri Province With CLIGEN”. Journal of New Results in Science 10/1 (April 2021), 54-64.
JAMA Demir S, Akdoğan Y, Yılmaz F, Erdoğan M, Kökçü S. Evaluation of Temperature Parameters in Kayseri Province with CLIGEN. JNRS. 2021;10:54–64.
MLA Demir, Saniye et al. “Evaluation of Temperature Parameters in Kayseri Province With CLIGEN”. Journal of New Results in Science, vol. 10, no. 1, 2021, pp. 54-64.
Vancouver Demir S, Akdoğan Y, Yılmaz F, Erdoğan M, Kökçü S. Evaluation of Temperature Parameters in Kayseri Province with CLIGEN. JNRS. 2021;10(1):54-6.


TR Dizin 31688

EBSCO30456


Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).