Derleme
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 10 Sayı: 1, 24 - 37, 30.04.2021

Öz

Kaynakça

  • S. Mondal, Phase change materials for smart textiles – An overview, Applied Thermal Engineering, 28, (2008) 1536–1550.
  • Y. Boan, Physical mechanism and characterization of smart thermal clothing, p. 267, PhD Dissertation, The Hong Kong Polytechnic University (2005) Hong Kong, China.
  • A. Sarı, A. Biçer, C. Alkan, Poly (styrene-co-maleic anhydride)-graft-fatty acids as novel solid–solid PCMs for thermal energy storage, Polymer Engineering and Science, 59(2), (2019) E337–E347.
  • R. Altun-Anayurt, C. Alkan, S. Alay-Aksoy, S. Demirbağ, M. S. Tözüm, Influence of hydrophilic comonomer on thermal properties of Polymethylemethacrylate/N-Alkanes microcapsules, Textile and Apparel, 27(2), (2017) 163–172.
  • C. Alkan, C. Rathgeber, P. Hennemann, S. Hiebler, Poly(ethylene co 1 tetradecylacrylate) and poly(ethylene co 1 octadecylacrylate) copolymers as novel solid-solid phase change materials for thermal energy storage, Polymer Bulletin, 76, (2019) 2021–2039.
  • W. Su, J. Darkwa, G. Kokogiannakis, Review of solid-liquid phase change materials and their encapsulation Technologies, Renewable & Sustainable Energy Reviews, 48, (2015) 373–391.
  • A. Arshad, M. Jabbal, Y. Yan, J. Darkwa, The micro-/nano-PCMs for thermal energy storage systems: A state of art review, International Journal of Energy Research, 43, (2019) 5572–5620.
  • G. Fanga, H. Li, F. Yanga, X. Liua, S. Wua, Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage, Chemical Engineering Journal, 153(1–3), (2009) 217–221.
  • F. Salaün, I. Vroman, Influence of core materials on thermal properties of melamine-formaldehyde microcapsules, European Polymer Journal, 44, (2008) 849–860.
  • L. Sánchez, P. Sánchez, A. Lucas, M. Carmona, J. F. Rodríguez, Microencapsulation of PCMs with a polystyrene shell, Colloid and Polymer Science, 285, (2007) 1377–1385.
  • M. Delgado, A. Lázaro, J. Mazo, B. Zalba, Review on phase change material emulsions and microencapsulated phase change material slurries: Materials, heat transfer studies and applications, Renewable and Sustainable Energy Reviews, 16(1), (2012) 253–273.
  • A. Sharma, V. V. Tyagi, C. R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, 13(2), (2009) 318–345.
  • D. Zhou, C. Y. Zhao, Y. Tian, Review on thermal energy storage with phase change materials (PCMs) in building applications, Applied Energy, 92, (2012) 593–605.
  • F. Agyenim, N. Hewitt, P. Eames, M. Smyth, A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS), Renewable and Sustainable Energy Reviews, 14, (2010) 615–628.
  • L. F. Cabeza, A. Castell, C. Barreneche, A. de Gracia, A. I. Fernández, Materials used as PCM in thermal energy storage in buildings: A review, Renewable and Sustainable Energy Reviews, 15, (2011) 1675–1695.
  • A. Karaipekli, A. Sarı, Capric-myristic acid/vermiculite composite as form-stable phase change materials for thermal energy storage, Solar Energy, 83, (2009) 323–332.
  • S. K. Ghosh, Functional Coatings by Polymer Microencapsulation, p.357, Wiley-VCH Verlag GmbH& Co, KGaA, Germany, 2006.
  • G. L. Zou, Z. C. Tan, X. Z. Lan, L. X. Sun, T. Zhang, Preparation and characterization of microencapsulated hexadecane used for thermal energy storage, Chinese Chemical Letters, 15(6), (2004) 729–732.
  • Anonim, 2013. Microcapsule structure. https://www.google.com.tr- (15.09.2013).
  • L. Pan, Q. H. Tao, S. D. Zhang, S. H. Wang, J. Zhang, S. H. Wang et al., Preparation, characterization and thermal properties of micro-encapsulated phase change materials, Solar Energy Mater Solar Cells, 98, (2012) 66–70.
  • F. Salaün, G. Bedek, E. Devaux, D. Dupont, L. Gengembre, Microencapsulation of a cooling agent by interfacial polymerization: Influence of the parameters of encapsulation on poly(urethane–urea) microparticles characteristics, Journal of Membrane Science, 370, (2011) 23–33.
  • T. Y. Wang, S. F. Wang, R. L. Luo, C. Y. Zhu, T. Akiyama, Z. G. Zhang, Microcapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage, Applied Energy, 171, (2016) 113–119.
  • A. Sarı, C. Alkan, D. Kahraman Döğüşcü, A. Biçer, Micro / nano-encapsulated n heptadecane with polystyrene shell for latent heat thermal energy storage, Solar Energy Mater Solar Cells, 126, (2014) 42–50.
  • Y. J. Ma, J. W. Zong, W. Li, L. Chen, X. F. Tang, N. Han, et al., Synthesis and characterization of thermal energy storage microencapsulated n-dodecanol with acrylic polymer shell, Energy, 87, (2015) 86–94.
  • F. N. Li, X. D. Wang, D. Z. Wu, Fabrication of multifunctional microcapsules containing n -eicosane core and zinc oxide shell for low-temperature energy storage, photocatalysis, and antibiosis, Energy Conversion and Management, 106, (2015) 873–85.
  • P. Zhang, X. Xiao, Z. W. Ma, A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement, Applied Energy, 165, (2016) 472–510.
  • K. Kant, A. Shukla, A. Sharma, Advancement in phase change materials for thermal energy storage applications, Solar Energy Mater Solar Cells, 172, (2017) 82–92.
  • F. Y. Jiang, X. D. Wang, D. Z. Wu, Design and synthesis of magnetic microcapsules based on n-eicosane core and Fe3O4 / SiO2 hybris shell for dual-functional phase change materials, Applied Energy, 134, (2014) 456–468.
  • Z. L. Zheng, Z. Chang, G. K. Xu, F. McBride, A. Ho, Z. Zhuola, et al., Microencapsulated phase change materials in solar-thermal conversion systems: Understanding geometry-dependent heating efficiency and system reliability, ACS Nano, 11, (2017) 721–729.
  • X. Geng, W. Li, Y. Wang, J. Lu, J. Wang, N. Wang, J. Li, X. Zhang, Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing, Applied Energy, 217, (2018) 281–294.
  • R. Kular, M. Friskovec, N. Hauptman, A. Vesel, M. K. Gunde, Colorimetric properties of reversible thermochromic printing inks, Dyes and Pigments, 86, (2010) 271–277.
  • L. Hu, S. Y. Lyu, F. Fu, J. D. Huang, S. Q. Wang, Preparation and properties of multifunctional thermochromic energy-storage wood materials, Journal of Membrane Science, 51, (2016) 2716–2726.
  • W. Zhang, X. Q. Ji, C. J. Zeng, K. L. Chen, Y. J. Yin, C. X. Wang, A new approach for the preparation of durable and reversible colour changing polyester fabrics using thermochromic leuco dye-loaded silica nanocapsules, Journal of Material Chemistry C, 5, (2017) 8169–8178.
  • J. Feng, L. Xiong, S. Q. Wang, S. Y. Li, Y. Li, G. Q. Yang, Fluorescent Temperature Sensing Using Triarylboron Compounds and Microcapsulesfor Detection of a Wide Temperature Range on the Micro‐ and Macroscale, Advanced Functional Materials, 23, (2013) 340–345.
  • C. J. Yu, Y. H. Zhang, D. K. Cheng, X. T. Li, Y. G. Huang, J. A. Rogers, All-elastomeric, strain-responsive thermochromic colour indicators, Small Journal, 10, (2014) 1266–1271.
  • O. Panák, M. Držková, M. Kaplanová, Insight into the evaluation of colour changes of leuco dye-based thermochromic systems as a function of temperature, Dyes and Pigments, 120, (2015) 279–287.
  • H. Wang, J. Luo, Y. Y. Yang, L. Zhao, G. L. Song, G. Y. Tang, Fabrication and characterization of microcapsulated phase change materials with an additional function of thermochromic performance, Solar Energy, 139, (2016) 591–598.
  • R. M. Christie, and I. D. Bryant, An evaluation of thermochromic prints based on microencapsulated liquid crystals using variable temperature colour measurement, Coloration Technology, 121, (2005) 187–192.
  • I. Malherbe, R. D. Sanderson, E. Smit, Reversibly thermochromic micro-fibres by coaxial electrospinning, Polymer, 51(22), (2010) 5037–5043.
  • M. A. Chowdhury, B. S. Butola and M. Joshi, Application of thermochromic colorants on textiles: temperature dependence of colorimetric properties, Coloration Technology, 129, (2013) 232–237.
  • M. A. Chowdhury, M. Joshi and B. S. Butola, Photochromic and Thermochromic Colorants in Textile Applications, Journal of Engineered Fibers and Fabrics, 9(1), (2014) 107–123.
  • M. Friskovec, R. Kulcar and M. K. Gunde, Light fastness and high-temperature stability of thermochromic printinginks, Coloration Technology, 129, (2012) 214–222.
  • R. Kulcar, M. Friskovec, N. Hauptman, A. Vesel, M. K. Gunde, Colorimetric properties of reversible thermochromic printinginks, Dyes and Pigments, 86, (2010) 271–277.
  • O. Panak, M. Drzkova, M. Kaplanova, Insight into the evaluation of colour changes of leuco dye-based thermochromic systems as a function of temperature, Dyes and Pigments, 120, (2015) 279–287.
  • O. Panak, M. Drzkova, M. Kaplanova, U. Novak, M. Klanjsek Gunde, The relation between colour and structural changes in thermochromic systems comprising crystal violet lactone, bisphenol A, and tetradecanol, Dyes and Pigments, 136, (2017) 382–389.
  • M. S. Tözüm, S. Alay Aksoy and C. Alkan, Microencapsulation of Three-Component Thermochromic System for Reversible Color Change and Thermal Energy Storage, Fibers and Polymers, 19, (2018) 660–669.
  • M. Rosita Kantola, DDS, Hemmo Kurunmäki, CDT, MDT, Pekka K. Vallittu, DDS, PhD, CDT, and Lippo V. J. Lassila, DDS. Use of thermochromic pigment in maxillofacial silicone elastomer, The Journal of Prosthetic Dentistry, 110, (2013) 320–325.
  • R. M. Christie, S. Robertson, and S. Taylor, Design concepts for a temperature-sensitive environment using thermochromic colour chang, Colour: Design & Creativity, 1(1), (2007) Article Number: 5, 1–11.
  • X. Geng, W. Li, Q. Yin, Y. Wang, N. Han, N. Wang, J. Bian, J. Wang, X. Zhang, Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity, Energy, 159, (2018) 857–869.
  • X. Y. Geng, W. Li, Y. Wang, J. W. Lu, J. P. Wang, N. Wang, J. J. Li, X. X. Zhang, Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing, Applied Energy, 217, (2018) 281–294.
  • K. Basnec, M. Hajzeri, M. Klanjsek Gunde, Thermal and colour properties of leuco dye-based thermochromic composite with dodecanol solvent, Journal of Thermal Analysis and Calorimetry, 127(1), (2016) 55–61.
  • B. Di Credico, G. Griffini, M. Levi, S. Turri, Microencapsulation of a UV-responsive photochromic dye by means of novel UV-screening polyurea-based shells for smart coating applications, ACS Applied Material Interfaces, 5(14), (2013) 6628–6634.
  • W. Zhang, C. Wang, K. Chen, and Y. Yin, Raspberry-shaped thermochromic energy storage nanocapsule with tunable sunlight absorption based on color change for temperature regulation, Small Journal, 15(47), (2019) Article Number:1903750, 1–10.
  • C. G. Granqvist, P. C. Lansåker, N. R. Mlyuka, G. A. Niklasson, E. Avendaño, Progress in chromogenics: New results for electrochromic and thermochromic materials and devices, Solar Energy Material Solar Cell, 93, (2009) 2032–2039.
  • C. M. Lampert, Chromogenic smart materials. Materials Today, 7, (2004) 28–35.
  • A. Seeboth, J. Schneider, A. Patzak, Materials for intelligent sun protecting glazing, Solar Energy Materials Solar Cell, 60, (2000) 263–277.
  • Sun protection without bubbles, Kunststoffe, 1, (2008) 83.
  • A. Seeboth, R. Ruhmann and O. Mühling, Thermotropic and thermochromic polymer based materials for adaptive solar control, Materials, 3, (2010) 5143–5168.
  • P. Nitz, H. Hartwig, Solar control with thermotropic layers, Solar Energy, 79, (2005) 573–582.
  • A. Seeboth, J. Schneider, A. Patzak, Materials for intelligent sun protecting glazing, Solar Energy Mater Solar Cells, 60, (2000) 263–77.
  • P. Nitz, A. Wagner, Schaltbare und regelbareVerglasungen, BINE Themeninfo, I/02, (2002) 1–12.
  • J. Yao, N. Zhu, Evaluation of indoor thermal environmental, energy and daylighting performance of thermotropic Windows, Building and Environment, 49, (2012) 283–290.
  • K. Resch, G. M. Wallner, Thermotropic layers for flat-plate collectors—A review of various concepts for overheating protection with polymeric materials, Solar Energy Material Solar Cells, 93, (2009) 119–128.
  • G. M. Wallner, K. Resch, R. Hausner, Property and performance requirements for thermotropic layers to prevent overheating in an all polymeric flat-plate collector, Solar Energy Material Solar Cells, 92, (2008) 614–620.
  • A. Webera, K. Resch, Thermotropic glazings for overheating protection, Energy Procedia, 30, (2012) 471–477.
  • A. Raicu, H. R. Wilson, P. Nitz, W. Platzer, V. Wittwer, Thermotropıc systems – recent results on component characterisation and simulation Of building integration, Fraunhofer Institute for Solar Energy Systems, ISE 2015.
  • M. M. Hohman, M. Shin, G. Rutledge, M. P. Brenner, Electrospinning and electrically forced jets. I. Stability theory, Physics of Fluids, 13(8), (2001) 2201–2220.
  • Y. M. Shin, M. M. Hohman, M. P. Brenner, G. C. Rutledge, Electrospinning: a whipping fluid jet generates submicron polymer fibers, Applied Physics Letters, 78, (2001) 1149–1151.
  • G. C. Rutledge, S. B. Warner, S. V. Fridrikh, S. C. Ugbolue, Electrostatic spinning and properties of ultrafine fibers (2003). National Textile Center annual report, project no. M01-MD22.
  • S. Fridrikh, J. Yu, M. Brenner, G. Rutledge, Controlling the fiber diameter during electrospinning, Physical Review Letters, 90(14), (2003) 144502-1-144502-4.
  • B. Cramariuc, R. Cramariuc, R. Scarlet, L.R. Manea, I.G. Lupu, O. Cramariuc, Fiber diameter in electrospinning process, Journal of Electrostatics, 71, (2013) 189–198.
  • S. Ramakrishna, K. Fujihara, W. Teo, T. Lim, Z. Ma, An introduction to electrospinning and nanofibers, World Scientific, Singapore, 2005.
  • B. S. Sunar, C. Hasçiçek, The Use of Electrospinned nanofibers as a drug delivery system and in tissue engineering, Marmara Pharmaceutical Journal, 21/3, (2017) 425–435.
  • A. Küçük, A. Evcin, Production and characterization of boron doped hydroxyapatite nanofibers by electrospinning method, Afyon Kocatepe University Journal of Science and Engineering Sciences, 14(3), (2013) 319–324.
  • A. R. Unnithan, R.S.Arathyram, and C. S. Kim, Electrospinning of polymers for tissue engineering, nanotechnology applications for tissue engineering, 978, (2015) 0-323-32889-0.
  • A. Karaszewska, I. Kamińska, A. Nejman, B. Gajdzicki, W. Fortuniak, J. Chojnowski, S. Slomkowski, P. Sowinski, Thermal-regulation of nonwoven fabrics by microcapsules of n-eicosane coated with a polysiloxane elastomer, Materials Chemistry and Physics, 226, (2019) 204–213.

Most Recent Aplications of Microencapsulated Phase Change Materials

Yıl 2021, Cilt: 10 Sayı: 1, 24 - 37, 30.04.2021

Öz

This study aims to inform about the up-to-date knowledge on the applications of microencapsulated phase change materials (MEPCMs). The most recent applications of MEPCMs are in the fields of thermotropic, thermochromic and electrospinning, which can be considered as smart systems. MEPCMs serve as protector materials for those unresistant against thermal environmental conditions. The common treatment of them is thermal storage. They serve other or hybrid properties after functionalization. Especially in solar energy systems, thermotropic materials are an important technology for overheating protection. Applications of reversible thermochromic microcapsules are extensively applied in many ways: sinks, coatings of smart materials, cement, textiles, luminescent thermosensors, and colour indicators. Nanofibers obtained by electrospinning method have many uses such as cosmetic applications, tissue engineering, filtration applications, agricultural applications, nanosensors, biomedical tools, protective clothing, reinforced composite making, controlled active substance release and will serve shortly responding thermal systems to environmental changes due to extended surface area and body structure due to fiber formation.

Kaynakça

  • S. Mondal, Phase change materials for smart textiles – An overview, Applied Thermal Engineering, 28, (2008) 1536–1550.
  • Y. Boan, Physical mechanism and characterization of smart thermal clothing, p. 267, PhD Dissertation, The Hong Kong Polytechnic University (2005) Hong Kong, China.
  • A. Sarı, A. Biçer, C. Alkan, Poly (styrene-co-maleic anhydride)-graft-fatty acids as novel solid–solid PCMs for thermal energy storage, Polymer Engineering and Science, 59(2), (2019) E337–E347.
  • R. Altun-Anayurt, C. Alkan, S. Alay-Aksoy, S. Demirbağ, M. S. Tözüm, Influence of hydrophilic comonomer on thermal properties of Polymethylemethacrylate/N-Alkanes microcapsules, Textile and Apparel, 27(2), (2017) 163–172.
  • C. Alkan, C. Rathgeber, P. Hennemann, S. Hiebler, Poly(ethylene co 1 tetradecylacrylate) and poly(ethylene co 1 octadecylacrylate) copolymers as novel solid-solid phase change materials for thermal energy storage, Polymer Bulletin, 76, (2019) 2021–2039.
  • W. Su, J. Darkwa, G. Kokogiannakis, Review of solid-liquid phase change materials and their encapsulation Technologies, Renewable & Sustainable Energy Reviews, 48, (2015) 373–391.
  • A. Arshad, M. Jabbal, Y. Yan, J. Darkwa, The micro-/nano-PCMs for thermal energy storage systems: A state of art review, International Journal of Energy Research, 43, (2019) 5572–5620.
  • G. Fanga, H. Li, F. Yanga, X. Liua, S. Wua, Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage, Chemical Engineering Journal, 153(1–3), (2009) 217–221.
  • F. Salaün, I. Vroman, Influence of core materials on thermal properties of melamine-formaldehyde microcapsules, European Polymer Journal, 44, (2008) 849–860.
  • L. Sánchez, P. Sánchez, A. Lucas, M. Carmona, J. F. Rodríguez, Microencapsulation of PCMs with a polystyrene shell, Colloid and Polymer Science, 285, (2007) 1377–1385.
  • M. Delgado, A. Lázaro, J. Mazo, B. Zalba, Review on phase change material emulsions and microencapsulated phase change material slurries: Materials, heat transfer studies and applications, Renewable and Sustainable Energy Reviews, 16(1), (2012) 253–273.
  • A. Sharma, V. V. Tyagi, C. R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, 13(2), (2009) 318–345.
  • D. Zhou, C. Y. Zhao, Y. Tian, Review on thermal energy storage with phase change materials (PCMs) in building applications, Applied Energy, 92, (2012) 593–605.
  • F. Agyenim, N. Hewitt, P. Eames, M. Smyth, A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS), Renewable and Sustainable Energy Reviews, 14, (2010) 615–628.
  • L. F. Cabeza, A. Castell, C. Barreneche, A. de Gracia, A. I. Fernández, Materials used as PCM in thermal energy storage in buildings: A review, Renewable and Sustainable Energy Reviews, 15, (2011) 1675–1695.
  • A. Karaipekli, A. Sarı, Capric-myristic acid/vermiculite composite as form-stable phase change materials for thermal energy storage, Solar Energy, 83, (2009) 323–332.
  • S. K. Ghosh, Functional Coatings by Polymer Microencapsulation, p.357, Wiley-VCH Verlag GmbH& Co, KGaA, Germany, 2006.
  • G. L. Zou, Z. C. Tan, X. Z. Lan, L. X. Sun, T. Zhang, Preparation and characterization of microencapsulated hexadecane used for thermal energy storage, Chinese Chemical Letters, 15(6), (2004) 729–732.
  • Anonim, 2013. Microcapsule structure. https://www.google.com.tr- (15.09.2013).
  • L. Pan, Q. H. Tao, S. D. Zhang, S. H. Wang, J. Zhang, S. H. Wang et al., Preparation, characterization and thermal properties of micro-encapsulated phase change materials, Solar Energy Mater Solar Cells, 98, (2012) 66–70.
  • F. Salaün, G. Bedek, E. Devaux, D. Dupont, L. Gengembre, Microencapsulation of a cooling agent by interfacial polymerization: Influence of the parameters of encapsulation on poly(urethane–urea) microparticles characteristics, Journal of Membrane Science, 370, (2011) 23–33.
  • T. Y. Wang, S. F. Wang, R. L. Luo, C. Y. Zhu, T. Akiyama, Z. G. Zhang, Microcapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage, Applied Energy, 171, (2016) 113–119.
  • A. Sarı, C. Alkan, D. Kahraman Döğüşcü, A. Biçer, Micro / nano-encapsulated n heptadecane with polystyrene shell for latent heat thermal energy storage, Solar Energy Mater Solar Cells, 126, (2014) 42–50.
  • Y. J. Ma, J. W. Zong, W. Li, L. Chen, X. F. Tang, N. Han, et al., Synthesis and characterization of thermal energy storage microencapsulated n-dodecanol with acrylic polymer shell, Energy, 87, (2015) 86–94.
  • F. N. Li, X. D. Wang, D. Z. Wu, Fabrication of multifunctional microcapsules containing n -eicosane core and zinc oxide shell for low-temperature energy storage, photocatalysis, and antibiosis, Energy Conversion and Management, 106, (2015) 873–85.
  • P. Zhang, X. Xiao, Z. W. Ma, A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement, Applied Energy, 165, (2016) 472–510.
  • K. Kant, A. Shukla, A. Sharma, Advancement in phase change materials for thermal energy storage applications, Solar Energy Mater Solar Cells, 172, (2017) 82–92.
  • F. Y. Jiang, X. D. Wang, D. Z. Wu, Design and synthesis of magnetic microcapsules based on n-eicosane core and Fe3O4 / SiO2 hybris shell for dual-functional phase change materials, Applied Energy, 134, (2014) 456–468.
  • Z. L. Zheng, Z. Chang, G. K. Xu, F. McBride, A. Ho, Z. Zhuola, et al., Microencapsulated phase change materials in solar-thermal conversion systems: Understanding geometry-dependent heating efficiency and system reliability, ACS Nano, 11, (2017) 721–729.
  • X. Geng, W. Li, Y. Wang, J. Lu, J. Wang, N. Wang, J. Li, X. Zhang, Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing, Applied Energy, 217, (2018) 281–294.
  • R. Kular, M. Friskovec, N. Hauptman, A. Vesel, M. K. Gunde, Colorimetric properties of reversible thermochromic printing inks, Dyes and Pigments, 86, (2010) 271–277.
  • L. Hu, S. Y. Lyu, F. Fu, J. D. Huang, S. Q. Wang, Preparation and properties of multifunctional thermochromic energy-storage wood materials, Journal of Membrane Science, 51, (2016) 2716–2726.
  • W. Zhang, X. Q. Ji, C. J. Zeng, K. L. Chen, Y. J. Yin, C. X. Wang, A new approach for the preparation of durable and reversible colour changing polyester fabrics using thermochromic leuco dye-loaded silica nanocapsules, Journal of Material Chemistry C, 5, (2017) 8169–8178.
  • J. Feng, L. Xiong, S. Q. Wang, S. Y. Li, Y. Li, G. Q. Yang, Fluorescent Temperature Sensing Using Triarylboron Compounds and Microcapsulesfor Detection of a Wide Temperature Range on the Micro‐ and Macroscale, Advanced Functional Materials, 23, (2013) 340–345.
  • C. J. Yu, Y. H. Zhang, D. K. Cheng, X. T. Li, Y. G. Huang, J. A. Rogers, All-elastomeric, strain-responsive thermochromic colour indicators, Small Journal, 10, (2014) 1266–1271.
  • O. Panák, M. Držková, M. Kaplanová, Insight into the evaluation of colour changes of leuco dye-based thermochromic systems as a function of temperature, Dyes and Pigments, 120, (2015) 279–287.
  • H. Wang, J. Luo, Y. Y. Yang, L. Zhao, G. L. Song, G. Y. Tang, Fabrication and characterization of microcapsulated phase change materials with an additional function of thermochromic performance, Solar Energy, 139, (2016) 591–598.
  • R. M. Christie, and I. D. Bryant, An evaluation of thermochromic prints based on microencapsulated liquid crystals using variable temperature colour measurement, Coloration Technology, 121, (2005) 187–192.
  • I. Malherbe, R. D. Sanderson, E. Smit, Reversibly thermochromic micro-fibres by coaxial electrospinning, Polymer, 51(22), (2010) 5037–5043.
  • M. A. Chowdhury, B. S. Butola and M. Joshi, Application of thermochromic colorants on textiles: temperature dependence of colorimetric properties, Coloration Technology, 129, (2013) 232–237.
  • M. A. Chowdhury, M. Joshi and B. S. Butola, Photochromic and Thermochromic Colorants in Textile Applications, Journal of Engineered Fibers and Fabrics, 9(1), (2014) 107–123.
  • M. Friskovec, R. Kulcar and M. K. Gunde, Light fastness and high-temperature stability of thermochromic printinginks, Coloration Technology, 129, (2012) 214–222.
  • R. Kulcar, M. Friskovec, N. Hauptman, A. Vesel, M. K. Gunde, Colorimetric properties of reversible thermochromic printinginks, Dyes and Pigments, 86, (2010) 271–277.
  • O. Panak, M. Drzkova, M. Kaplanova, Insight into the evaluation of colour changes of leuco dye-based thermochromic systems as a function of temperature, Dyes and Pigments, 120, (2015) 279–287.
  • O. Panak, M. Drzkova, M. Kaplanova, U. Novak, M. Klanjsek Gunde, The relation between colour and structural changes in thermochromic systems comprising crystal violet lactone, bisphenol A, and tetradecanol, Dyes and Pigments, 136, (2017) 382–389.
  • M. S. Tözüm, S. Alay Aksoy and C. Alkan, Microencapsulation of Three-Component Thermochromic System for Reversible Color Change and Thermal Energy Storage, Fibers and Polymers, 19, (2018) 660–669.
  • M. Rosita Kantola, DDS, Hemmo Kurunmäki, CDT, MDT, Pekka K. Vallittu, DDS, PhD, CDT, and Lippo V. J. Lassila, DDS. Use of thermochromic pigment in maxillofacial silicone elastomer, The Journal of Prosthetic Dentistry, 110, (2013) 320–325.
  • R. M. Christie, S. Robertson, and S. Taylor, Design concepts for a temperature-sensitive environment using thermochromic colour chang, Colour: Design & Creativity, 1(1), (2007) Article Number: 5, 1–11.
  • X. Geng, W. Li, Q. Yin, Y. Wang, N. Han, N. Wang, J. Bian, J. Wang, X. Zhang, Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity, Energy, 159, (2018) 857–869.
  • X. Y. Geng, W. Li, Y. Wang, J. W. Lu, J. P. Wang, N. Wang, J. J. Li, X. X. Zhang, Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing, Applied Energy, 217, (2018) 281–294.
  • K. Basnec, M. Hajzeri, M. Klanjsek Gunde, Thermal and colour properties of leuco dye-based thermochromic composite with dodecanol solvent, Journal of Thermal Analysis and Calorimetry, 127(1), (2016) 55–61.
  • B. Di Credico, G. Griffini, M. Levi, S. Turri, Microencapsulation of a UV-responsive photochromic dye by means of novel UV-screening polyurea-based shells for smart coating applications, ACS Applied Material Interfaces, 5(14), (2013) 6628–6634.
  • W. Zhang, C. Wang, K. Chen, and Y. Yin, Raspberry-shaped thermochromic energy storage nanocapsule with tunable sunlight absorption based on color change for temperature regulation, Small Journal, 15(47), (2019) Article Number:1903750, 1–10.
  • C. G. Granqvist, P. C. Lansåker, N. R. Mlyuka, G. A. Niklasson, E. Avendaño, Progress in chromogenics: New results for electrochromic and thermochromic materials and devices, Solar Energy Material Solar Cell, 93, (2009) 2032–2039.
  • C. M. Lampert, Chromogenic smart materials. Materials Today, 7, (2004) 28–35.
  • A. Seeboth, J. Schneider, A. Patzak, Materials for intelligent sun protecting glazing, Solar Energy Materials Solar Cell, 60, (2000) 263–277.
  • Sun protection without bubbles, Kunststoffe, 1, (2008) 83.
  • A. Seeboth, R. Ruhmann and O. Mühling, Thermotropic and thermochromic polymer based materials for adaptive solar control, Materials, 3, (2010) 5143–5168.
  • P. Nitz, H. Hartwig, Solar control with thermotropic layers, Solar Energy, 79, (2005) 573–582.
  • A. Seeboth, J. Schneider, A. Patzak, Materials for intelligent sun protecting glazing, Solar Energy Mater Solar Cells, 60, (2000) 263–77.
  • P. Nitz, A. Wagner, Schaltbare und regelbareVerglasungen, BINE Themeninfo, I/02, (2002) 1–12.
  • J. Yao, N. Zhu, Evaluation of indoor thermal environmental, energy and daylighting performance of thermotropic Windows, Building and Environment, 49, (2012) 283–290.
  • K. Resch, G. M. Wallner, Thermotropic layers for flat-plate collectors—A review of various concepts for overheating protection with polymeric materials, Solar Energy Material Solar Cells, 93, (2009) 119–128.
  • G. M. Wallner, K. Resch, R. Hausner, Property and performance requirements for thermotropic layers to prevent overheating in an all polymeric flat-plate collector, Solar Energy Material Solar Cells, 92, (2008) 614–620.
  • A. Webera, K. Resch, Thermotropic glazings for overheating protection, Energy Procedia, 30, (2012) 471–477.
  • A. Raicu, H. R. Wilson, P. Nitz, W. Platzer, V. Wittwer, Thermotropıc systems – recent results on component characterisation and simulation Of building integration, Fraunhofer Institute for Solar Energy Systems, ISE 2015.
  • M. M. Hohman, M. Shin, G. Rutledge, M. P. Brenner, Electrospinning and electrically forced jets. I. Stability theory, Physics of Fluids, 13(8), (2001) 2201–2220.
  • Y. M. Shin, M. M. Hohman, M. P. Brenner, G. C. Rutledge, Electrospinning: a whipping fluid jet generates submicron polymer fibers, Applied Physics Letters, 78, (2001) 1149–1151.
  • G. C. Rutledge, S. B. Warner, S. V. Fridrikh, S. C. Ugbolue, Electrostatic spinning and properties of ultrafine fibers (2003). National Textile Center annual report, project no. M01-MD22.
  • S. Fridrikh, J. Yu, M. Brenner, G. Rutledge, Controlling the fiber diameter during electrospinning, Physical Review Letters, 90(14), (2003) 144502-1-144502-4.
  • B. Cramariuc, R. Cramariuc, R. Scarlet, L.R. Manea, I.G. Lupu, O. Cramariuc, Fiber diameter in electrospinning process, Journal of Electrostatics, 71, (2013) 189–198.
  • S. Ramakrishna, K. Fujihara, W. Teo, T. Lim, Z. Ma, An introduction to electrospinning and nanofibers, World Scientific, Singapore, 2005.
  • B. S. Sunar, C. Hasçiçek, The Use of Electrospinned nanofibers as a drug delivery system and in tissue engineering, Marmara Pharmaceutical Journal, 21/3, (2017) 425–435.
  • A. Küçük, A. Evcin, Production and characterization of boron doped hydroxyapatite nanofibers by electrospinning method, Afyon Kocatepe University Journal of Science and Engineering Sciences, 14(3), (2013) 319–324.
  • A. R. Unnithan, R.S.Arathyram, and C. S. Kim, Electrospinning of polymers for tissue engineering, nanotechnology applications for tissue engineering, 978, (2015) 0-323-32889-0.
  • A. Karaszewska, I. Kamińska, A. Nejman, B. Gajdzicki, W. Fortuniak, J. Chojnowski, S. Slomkowski, P. Sowinski, Thermal-regulation of nonwoven fabrics by microcapsules of n-eicosane coated with a polysiloxane elastomer, Materials Chemistry and Physics, 226, (2019) 204–213.
Toplam 76 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Ruhan Altun Anayurt 0000-0002-7327-6871

Cemil Alkan 0000-0002-1509-4789

Yayımlanma Tarihi 30 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 10 Sayı: 1

Kaynak Göster

APA Altun Anayurt, R., & Alkan, C. (2021). Most Recent Aplications of Microencapsulated Phase Change Materials. Journal of New Results in Science, 10(1), 24-37.
AMA Altun Anayurt R, Alkan C. Most Recent Aplications of Microencapsulated Phase Change Materials. JNRS. Nisan 2021;10(1):24-37.
Chicago Altun Anayurt, Ruhan, ve Cemil Alkan. “Most Recent Aplications of Microencapsulated Phase Change Materials”. Journal of New Results in Science 10, sy. 1 (Nisan 2021): 24-37.
EndNote Altun Anayurt R, Alkan C (01 Nisan 2021) Most Recent Aplications of Microencapsulated Phase Change Materials. Journal of New Results in Science 10 1 24–37.
IEEE R. Altun Anayurt ve C. Alkan, “Most Recent Aplications of Microencapsulated Phase Change Materials”, JNRS, c. 10, sy. 1, ss. 24–37, 2021.
ISNAD Altun Anayurt, Ruhan - Alkan, Cemil. “Most Recent Aplications of Microencapsulated Phase Change Materials”. Journal of New Results in Science 10/1 (Nisan 2021), 24-37.
JAMA Altun Anayurt R, Alkan C. Most Recent Aplications of Microencapsulated Phase Change Materials. JNRS. 2021;10:24–37.
MLA Altun Anayurt, Ruhan ve Cemil Alkan. “Most Recent Aplications of Microencapsulated Phase Change Materials”. Journal of New Results in Science, c. 10, sy. 1, 2021, ss. 24-37.
Vancouver Altun Anayurt R, Alkan C. Most Recent Aplications of Microencapsulated Phase Change Materials. JNRS. 2021;10(1):24-37.


TR Dizin 31688

EBSCO30456


Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).