Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 10 Sayı: 2, 77 - 82, 31.08.2021

Öz

Kaynakça

  • A. Ahmed, M. U. Arshad, F. Saeed, R. S. Ahmed, S. A. S. Chatha, Nutritional probing and HPLC profiling of roasted date pit powder, Pakistan Journal of Nutrition, 15, (2016) 229–237.
  • S. Abbas, S. Nasreen, A. Haroon, M.A. Ashraf, Synthesis of Silver and Copper Nanoparticles from Plants and Application as Adsorbents for Naphthalene decontamination, Saudi Journal of Biological Sciences, 27, (2020) 1016–1023.
  • L. Hollecker, M. Pinna, G. Filippino, S. Scrugli, B. Pinna, F. Argiolas, M. Murru, Simultaneous determination of polyphenolic compounds in red and white grapes grown in Sardinia by high performance liquid chromatography–electron spray ionisation-mass spectrometry, Journal of Chromatography A, 1216, (2009) 3402–3408.
  • L. Luo, Y. Cui, S. Zhang, L. Li, H. Suo, B. Sun, Detailed phenolic composition of Vidal grape pomace by ultrahigh-performance liquid chromatography-tandem mass spectrometry, Journal of Chromatography B, 1068–1069, (2017) 201–209.
  • S. Uluata, N. Ozdemir, Evaluation of Chemical Characterization, Antioxidant Activity and Oxidative Stability of Some Waste Seed Oil, Turkish Journal of Agriculture - Food Science and Technology, 5, (2017) 48.
  • S. Talekar, A. F. Patti, R. Singh, R. Vijayraghavan, A. Arora, From waste to wealth: High recovery of nutraceuticals from pomegranate seed waste using a green extraction process, Industrial Crops and Products, 112, (2018) 790–802.
  • R. G. Yousuf, J. B. Winterburn, Waste date seed oil extract as an alternative feedstock for Poly(3-hydroxybutyrate) synthesis, Biochemical Engineering Journal, 127, (2017) 68–76.
  • S. Turan, R. Solak, M. Kiralan, M. F. Ramadan, Bioactive lipids, antiradical activity and stability of rosehip seed oil under thermal and photo-induced oxidation, Grasas y Aceites, 69, (2018) e248.
  • M. Elmastaş, A. Demir, N. Genç, Ü. Dölek, M. Güneş, Changes in flavonoid and phenolic acid contents in some Rosa species during ripening, Food Chemistry, 235, (2017) 154–159.
  • F. D’angiolillo, M. M. Mammano, G. Fascella, Pigments, Polyphenols and Antioxidant Activity of Leaf Extracts from Four Wild Rose Species Grown in Sicily, Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46, (2018) 402–409.
  • I. Atalar, F. T. Saricaoglu, H. I. Odabas, V. A. Yilmaz, O. Gul, Effect of ultrasonication treatment on structural, physicochemical and bioactive properties of pasteurized rosehip (Rosa canina L.) nectar, LWT - Food Science and Technology, 118, (2020) 108850.
  • A. Bhave, V. Schulzova, H. Chmelarova, L. Mrnka, J. Hajslova, Assessment of rosehips based on the content of their biologically active compounds, Journal of Food and Drug Analysis, 25, (2017) 681–690.
  • M. Taghizadeh, A. A. Rashidi, A. A. Taherian, Z. Vakili, M. Sajad Sajadian, M. Ghardashi, Antidiabetic and antihyperlipidemic effects of ethanol extract of Rosa canina L. fruit on diabetic rats: An experimental study with histopathological evaluations, Journal of Evidence-based Complementary & Alternative Medicine, 21, (2016) NP25-30.
  • H. Jahongir, Z. Miansong, I. Amankeldi, Z. Yu, L. Changheng, The influence of particle size on supercritical extraction of dog rose (Rosa canina) seed oil, Journal of King Saud University - Engineering Sciences, 31, (2019) 140–143.
  • A. Koç, Chemical changes in seeds and fruits of natural growing rosehip (rosa sp.) from Yozgat (TURKEY), Acta Scientiarum Polonorum Hortorum Cultus, 19, (2020) 123–134.
  • M. Grajzer, A. Prescha, K. Korzonek, A. Wojakowska, M. Dziadas, A. Kulma, H. Grajeta, Characteristics of rose hip (Rosa canina L.) cold-pressed oil and its oxidative stability studied by the differential scanning calorimetry method, Food Chemistry, 188, (2015) 459–466.
  • H. Ilyasoğlu, Characterization of rosehip (rosa canina l.) seed and seed oil, International Journal of Food Properties, 17, (2014) 1591–1598.
  • I. Demirtas, I. H. Gecibesler, A. Sahin Yaglioglu, Antiproliferative activities of isolated flavone glycosides and fatty acids from Stachys byzantina, Phytochemistry Letters, 6, (2013) 209–214.
  • M. Güney, Determination of fatty acid profile and antioxidant activity of Rosehip seeds from Turkey, International Journal of Agriculture, Environment and Food Sciences, 4, (2020) 114–118.
  • M. Dąbrowska, E. Maciejczyk, D. Kalemba, Rosehip seed oil: Methods of extraction and chemical composition, The European Journal of Lipid Science and Technology, 121, (2019) 1800440.
  • J. Gruenwald, R. Uebelhack, M. I. Moré, Rosa canina – Rosehip pharmacological ingredients and molecular mechanics counteracting osteoarthritis – A systematic review, Phytomedicine, 60, (2019) 152958.
  • Y. S. Ikhsanov, G. E. Tasmagambetova, Y. A. Litvinenko, G. S. Burasheva, G. A. Seitimova, Phytochemical composition of lipophilic fraction of plants of the plant Rosa canina l. genus rosa, Chemistry and Technology, 2, (2020) 69–74.
  • K. Rovná, E. Ivanišová, J. Žiarovská, P. Ferus, M. Terentjeva, P. Ł. Kowalczewski, M. Kačániová, Characterization of rosa canina fruits collected in urban areas of Slovakia. Genome size, IPBS profiles and antioxidant and antimicrobial activities, Molecules, 25, (2020).
  • K. Szentmihályi, P. Vinkler, B. Lakatos, V. Illés, M. Then, Rose hip (Rosa canina L.) oil obtained from waste hip seeds by different extraction methods, Bioresource Technology, 82, (2002) 195–201.

Fatty acids from waste rosehip seed: chemical characterization by GC-MS

Yıl 2021, Cilt: 10 Sayı: 2, 77 - 82, 31.08.2021

Öz

Recently, the use of oils obtained from waste vegetable sources in the food, pharmaceutical, and cosmetic industries has been increasing. Rosehip fruit is a good source of waste, resulting in a large number of waste seeds after processing for various products in the food industry. Waste rosehip seed was obtained from the rosehip marmalade canning industry. The main aim of this study is to determine fatty acid contents of waste rosehip seed by Gas Chromatography coupled with Mass Spectrometry (GC-MS). Eighteen components comprising 100% of the total peak area were determined in the petroleum ether extract. Oleic acid methyl ester (9-Octadecenoic acid (Z)-, methyl ester) (36.42%) was determined to be the dominant fatty acid.

Kaynakça

  • A. Ahmed, M. U. Arshad, F. Saeed, R. S. Ahmed, S. A. S. Chatha, Nutritional probing and HPLC profiling of roasted date pit powder, Pakistan Journal of Nutrition, 15, (2016) 229–237.
  • S. Abbas, S. Nasreen, A. Haroon, M.A. Ashraf, Synthesis of Silver and Copper Nanoparticles from Plants and Application as Adsorbents for Naphthalene decontamination, Saudi Journal of Biological Sciences, 27, (2020) 1016–1023.
  • L. Hollecker, M. Pinna, G. Filippino, S. Scrugli, B. Pinna, F. Argiolas, M. Murru, Simultaneous determination of polyphenolic compounds in red and white grapes grown in Sardinia by high performance liquid chromatography–electron spray ionisation-mass spectrometry, Journal of Chromatography A, 1216, (2009) 3402–3408.
  • L. Luo, Y. Cui, S. Zhang, L. Li, H. Suo, B. Sun, Detailed phenolic composition of Vidal grape pomace by ultrahigh-performance liquid chromatography-tandem mass spectrometry, Journal of Chromatography B, 1068–1069, (2017) 201–209.
  • S. Uluata, N. Ozdemir, Evaluation of Chemical Characterization, Antioxidant Activity and Oxidative Stability of Some Waste Seed Oil, Turkish Journal of Agriculture - Food Science and Technology, 5, (2017) 48.
  • S. Talekar, A. F. Patti, R. Singh, R. Vijayraghavan, A. Arora, From waste to wealth: High recovery of nutraceuticals from pomegranate seed waste using a green extraction process, Industrial Crops and Products, 112, (2018) 790–802.
  • R. G. Yousuf, J. B. Winterburn, Waste date seed oil extract as an alternative feedstock for Poly(3-hydroxybutyrate) synthesis, Biochemical Engineering Journal, 127, (2017) 68–76.
  • S. Turan, R. Solak, M. Kiralan, M. F. Ramadan, Bioactive lipids, antiradical activity and stability of rosehip seed oil under thermal and photo-induced oxidation, Grasas y Aceites, 69, (2018) e248.
  • M. Elmastaş, A. Demir, N. Genç, Ü. Dölek, M. Güneş, Changes in flavonoid and phenolic acid contents in some Rosa species during ripening, Food Chemistry, 235, (2017) 154–159.
  • F. D’angiolillo, M. M. Mammano, G. Fascella, Pigments, Polyphenols and Antioxidant Activity of Leaf Extracts from Four Wild Rose Species Grown in Sicily, Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46, (2018) 402–409.
  • I. Atalar, F. T. Saricaoglu, H. I. Odabas, V. A. Yilmaz, O. Gul, Effect of ultrasonication treatment on structural, physicochemical and bioactive properties of pasteurized rosehip (Rosa canina L.) nectar, LWT - Food Science and Technology, 118, (2020) 108850.
  • A. Bhave, V. Schulzova, H. Chmelarova, L. Mrnka, J. Hajslova, Assessment of rosehips based on the content of their biologically active compounds, Journal of Food and Drug Analysis, 25, (2017) 681–690.
  • M. Taghizadeh, A. A. Rashidi, A. A. Taherian, Z. Vakili, M. Sajad Sajadian, M. Ghardashi, Antidiabetic and antihyperlipidemic effects of ethanol extract of Rosa canina L. fruit on diabetic rats: An experimental study with histopathological evaluations, Journal of Evidence-based Complementary & Alternative Medicine, 21, (2016) NP25-30.
  • H. Jahongir, Z. Miansong, I. Amankeldi, Z. Yu, L. Changheng, The influence of particle size on supercritical extraction of dog rose (Rosa canina) seed oil, Journal of King Saud University - Engineering Sciences, 31, (2019) 140–143.
  • A. Koç, Chemical changes in seeds and fruits of natural growing rosehip (rosa sp.) from Yozgat (TURKEY), Acta Scientiarum Polonorum Hortorum Cultus, 19, (2020) 123–134.
  • M. Grajzer, A. Prescha, K. Korzonek, A. Wojakowska, M. Dziadas, A. Kulma, H. Grajeta, Characteristics of rose hip (Rosa canina L.) cold-pressed oil and its oxidative stability studied by the differential scanning calorimetry method, Food Chemistry, 188, (2015) 459–466.
  • H. Ilyasoğlu, Characterization of rosehip (rosa canina l.) seed and seed oil, International Journal of Food Properties, 17, (2014) 1591–1598.
  • I. Demirtas, I. H. Gecibesler, A. Sahin Yaglioglu, Antiproliferative activities of isolated flavone glycosides and fatty acids from Stachys byzantina, Phytochemistry Letters, 6, (2013) 209–214.
  • M. Güney, Determination of fatty acid profile and antioxidant activity of Rosehip seeds from Turkey, International Journal of Agriculture, Environment and Food Sciences, 4, (2020) 114–118.
  • M. Dąbrowska, E. Maciejczyk, D. Kalemba, Rosehip seed oil: Methods of extraction and chemical composition, The European Journal of Lipid Science and Technology, 121, (2019) 1800440.
  • J. Gruenwald, R. Uebelhack, M. I. Moré, Rosa canina – Rosehip pharmacological ingredients and molecular mechanics counteracting osteoarthritis – A systematic review, Phytomedicine, 60, (2019) 152958.
  • Y. S. Ikhsanov, G. E. Tasmagambetova, Y. A. Litvinenko, G. S. Burasheva, G. A. Seitimova, Phytochemical composition of lipophilic fraction of plants of the plant Rosa canina l. genus rosa, Chemistry and Technology, 2, (2020) 69–74.
  • K. Rovná, E. Ivanišová, J. Žiarovská, P. Ferus, M. Terentjeva, P. Ł. Kowalczewski, M. Kačániová, Characterization of rosa canina fruits collected in urban areas of Slovakia. Genome size, IPBS profiles and antioxidant and antimicrobial activities, Molecules, 25, (2020).
  • K. Szentmihályi, P. Vinkler, B. Lakatos, V. Illés, M. Then, Rose hip (Rosa canina L.) oil obtained from waste hip seeds by different extraction methods, Bioresource Technology, 82, (2002) 195–201.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Kadriye Özlem Saygı 0000-0001-5945-4419

Yayımlanma Tarihi 31 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 10 Sayı: 2

Kaynak Göster

APA Saygı, K. Ö. (2021). Fatty acids from waste rosehip seed: chemical characterization by GC-MS. Journal of New Results in Science, 10(2), 77-82.
AMA Saygı KÖ. Fatty acids from waste rosehip seed: chemical characterization by GC-MS. JNRS. Ağustos 2021;10(2):77-82.
Chicago Saygı, Kadriye Özlem. “Fatty Acids from Waste Rosehip Seed: Chemical Characterization by GC-MS”. Journal of New Results in Science 10, sy. 2 (Ağustos 2021): 77-82.
EndNote Saygı KÖ (01 Ağustos 2021) Fatty acids from waste rosehip seed: chemical characterization by GC-MS. Journal of New Results in Science 10 2 77–82.
IEEE K. Ö. Saygı, “Fatty acids from waste rosehip seed: chemical characterization by GC-MS”, JNRS, c. 10, sy. 2, ss. 77–82, 2021.
ISNAD Saygı, Kadriye Özlem. “Fatty Acids from Waste Rosehip Seed: Chemical Characterization by GC-MS”. Journal of New Results in Science 10/2 (Ağustos 2021), 77-82.
JAMA Saygı KÖ. Fatty acids from waste rosehip seed: chemical characterization by GC-MS. JNRS. 2021;10:77–82.
MLA Saygı, Kadriye Özlem. “Fatty Acids from Waste Rosehip Seed: Chemical Characterization by GC-MS”. Journal of New Results in Science, c. 10, sy. 2, 2021, ss. 77-82.
Vancouver Saygı KÖ. Fatty acids from waste rosehip seed: chemical characterization by GC-MS. JNRS. 2021;10(2):77-82.


EBSCO 30456

Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).